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ABSTRACT: Two-dimensional (2D) materials and heterostructures are
promising candidates for nanoelectronics. However, the quality of material
interfaces often limits the performance of electronic devices made from
atomically thick 2D materials and heterostructures. Atomic force microscopy
(AFM) tip-based cleaning is a reliable technique to remove interface
contaminants and flatten heterostructures. Here, we demonstrate AFM tip-
based cleaning applied to hBN-encapsulated monolayer MoS2 transistors,
which results in electrical performance improvements of the devices. To
investigate the impact of cleaning on device performance, we compared the characteristics of as-transferred heterostructures and
transistors before and after tip-based cleaning using photoluminescence (PL) and electronic measurements. The PL linewidth of
monolayer MoS2 decreased from 84 meV before cleaning to 71 meV after cleaning. The extrinsic mobility of monolayer MoS2 field-
effect transistors increased from 21 cm2/Vs before cleaning to 38 cm2/Vs after cleaning. Using the results from AFM topography,
photoluminescence, and back-gated field-effect measurements, we infer that tip-based cleaning enhances the mobility of hBN-
encapsulated monolayer MoS2 by reducing interface disorder. Finally, we fabricate a MoS2 field-effect transistor (FET) from a tip-
cleaned heterostructure and achieved a device mobility of 73 cm2/Vs. The results of this work could be used to improve the
electrical performance of heterostructure devices and other types of mechanically assembled van der Waals heterostructures.

■ INTRODUCTION

The quality of material interfaces is critical to the performance
of electronic devices and is particularly important for electronic
devices made from two-dimensional (2D) materials. Common
interface disorders that degrade device performance include
interface Coulomb impurities, charge traps,1−4 and local
fluctuations in strain5,6 and dielectric screening.7 Carrier
scattering due to interface impurities is significant, as
atomically thick 2D materials do not have any bulk to screen
impurities.8 Carriers may also scatter at defects that arise from
folding or wrinkling of the 2D material.9,10

Layers of 2D materials can be stacked together via van der
Waals forces to create a wide variety of heterostructures that
have novel or improved properties.11 Clean and smooth
interfaces are essential for the performance of electronic
devices made from heterostructures.12−14 Mechanical assembly
is the most common way to fabricate van der Waals
heterostructures,11,15 but it often traps contaminants at the
interfaces, which limits the carrier mobility, device perform-
ance, reproducibility, and reliability. Contaminants are trapped
at the interfaces as a result of the competition between the
elastic energy of the deformed 2D crystal and the adhesion
energy between the 2D crystal and its substrate.16−18 These
contaminants come from the ambient environment or are
residual materials from the assembly process.12,19−21 Some
research studies have been published on the nature of these

contaminants,12,17,22 which include organic residue at the
interfaces of stacked 2D layers.12,21,23 To minimize interface
contamination, it is necessary to either prevent the
contamination from forming during fabrication or to remove
it after fabrication. Strategies to prevent interface contami-
nation include transferring in inert-gas filled glovebox or in
vacuum,24,25 as well as minimizing exposure of 2D materials to
polymers and solvents used in transfer, such as dry pick-
up.19,26,27 Dry pick-up technique uses one layer of the 2D
material to pick up another layer by van der Waals forces,
which has enabled the fabrication of electronic devices with
record-high performance and novel properties.14,26,28−30

However, there exists substantial variation in electrical
performance among the devices fabricated by pick-up
technique,19,31 which suggests a need to further improve the
quality of the interfaces after assembly.
A few cleaning techniques are available to improve the

interfaces of van der Waals heterostructures after assembly. As
2D materials are impermeable to all gases and liquids,32−34
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chemical and plasma-based techniques for cleaning the surfaces
of 2D materials are not applicable for cleaning the
interfaces.35−37 Instead, thermal annealing is often used to
reduce interface bubbles and increase the bubble-free
area.8,12,31,38 At the annealing temperature (typically 200−
500 °C), small bubbles become mobile and migrate or
aggregate into large bubbles.38 Annealing relies on the random
motion of interface bubbles and cannot reliably remove
trapped contaminants from specific interface regions. Decom-
position of contaminants during annealing may also produce
radicals that damage 2D materials.39 Alternatively, mechanical
cleaning techniques, such as atomic force microscopy (AFM)
tip-based cleaning, remove interface contaminants in a
controlled fashion without damaging 2D materials.21,31,40,41

In tip-based cleaning, an AFM tip squeezes trapped
contaminants out from the interface of the targeted cleaning
area, leaving the interface of the scanned area clean and flat.40

Tip-based cleaning improved the mobility of bilayer graphene
on hBN by a factor of 60−250%.42 hBN-encapsulated
graphene and few-layer MoS2 devices also showed improve-
ment in their magneto transport properties after tip-based
cleaning.31 Monolayers of 2D semiconductors, such as MoS2,
WSe2 and BP, are promising channel materials for nano-
electronics, whose intrinsic carrier mobilities are however
typically limited by extrinsic carrier scattering sources.43−46

hBN encapsulation improves device performance of 2D
semiconductors by reducing extrinsic disorders due to surface
roughness, charged impurities, and interface charge traps, as
hBN has fewer Coulomb impurities than SiO2 and high-κ
dielectric substrates and is atomically flat.38,46,47 There has
however been no published research that investigates potential
improvements for hBN-encapsulated 2D semiconductors using
tip-based cleaning and smoothing.
This article reports significant improvement of interface

qualities and electrical performance of hBN-encapsulated
monolayer MoS2 by tip-based cleaning. The cleaning process
reduced nanometer-scale height fluctuations by an order of
magnitude and reduced the photoluminescence linewidth of
hBN-encapsulated monolayer MoS2 from 84 ± 3 to 71 ± 3
meV, both of which indicate a reduction of interface disorder.
The mobility of four monolayer MoS2 FETs fabricated on the
as-transferred heterostructure increased from an average of 21
± 2 to 38 ± 6 cm2/Vs after cleaning, demonstrating that tip-
based cleaning is effective in reducing interface disorder and
enhancing the mobility of hBN-encapsulated monolayer MoS2.
Finally, we demonstrate the utility of this approach by
fabricating and testing a MoS2 field-effect transistor (FET)
fabricated on a tip-cleaned heterostructure.

■ RESULTS
Figure 1 shows the tip-based cleaning of 2D heterostructures.
The heterostructure system consists of monolayer MoS2
encapsulated between monolayer (1L) hBN on top and
multilayer (ML) hBN underneath. Figure 1a illustrates the
concept of tip-based cleaning. As-transferred 2D hetero-
structures have surface and interface contaminants and voids
between the 2D layers. The interface contaminants and voids
aggregate into isolated pockets with typical lateral sizes from a
few nanometers up to micrometers.16,19 In addition to the
voids and contaminants shown in Figure 1, there are also voids
and contaminants between monolayer MoS2 and the multilayer
hBN substrate. By scanning the surface of the stacked 2D
layers with an AFM tip in contact mode, the tip squeezes

trapped contaminants out from the interface of stacked 2D
layers and flattens the stacked 2D layers while pushing surface
contaminants along the scan direction. The AFM tip scans in a
raster fashion, as in normal contact mode imaging. Surface and
interface contaminants accumulate at the end of each scan line,
leaving the scanned area clean and smooth.
We prepared the heterostructure stacks using an established

dry pick-up technique summarized as follows.19,27 First, we
exfoliated hBN and MoS2 flakes onto separate SiO2 on Si
substrates by Scotch tape. We used monolayers for the top
hBN and 8−20 nm thick layers for the bottom hBN. Atomic
force microscopy confirmed the monolayer nature of top hBN.
Second, we picked up top hBN with a polycarbonate (PC) film
coated on a polydimethylsiloxane (PDMS) lens.48 Third, we
sequentially picked up monolayer MoS2 and bottom hBN by
van der Waals forces between MoS2 and hBN. Finally, we
transferred monolayer MoS2 encapsulated by top monolayer
hBN and bottom multilayer hBN to the final 285 nm SiO2 on
the Si substrate. Figures S1, S2, and S3 show additional details
of the fabrication. This heterostructure system has two benefits
for studying the interfaces: First, this system has two interfaces
between MoS2 and hBN in the top 1−2 nm of the
heterostructure, allowing the AFM to reveal details of interface
inhomogeneity that are largely masked by much thicker top
hBN.31 Second, the top monolayer hBN serves as a tunnel
layer to help inject charge carriers from contact metals into
MoS2, allowing direct metal deposition to fabricate electronic
devices, without additional processing steps.49,50

We performed the tip-based cleaning and measurement
experiments using an Asylum MFP−3D AFM system. For all
cleaning experiments, we used a cleaning force of 70−140 nN,
and a scan speed of up to 28 μm/s. Mechanical cleaning
depends strongly on the cleaning force but weakly on the
speed. As long as the cleaning force is optimized, the scan
speed should not significantly affect the cleaning. In general,
AFM tip-based cleaning is limited by its throughput, so a faster
scan is often better. The optimization of the cleaning force will
be discussed later, while the scan speed was limited by the

Figure 1. (a) Schematic of tip-based cleaning of 1L hBN covered 1L
MoS2 on a ML hBN substrate. AFM topography images of hBN-
encapsulated monolayer MoS2 (b) before and (c) after tip-based
cleaning. (d, e) Line scans along the dashed lines in (b) and (c),
respectively. Inset in (d) is the magnified view of the height profile
over the position 0−0.5 μm.
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control system of MFP-3D, which would be greatly increased
using a video-rate AFM system.51 The cleaning tips had a
nominal tip radius of 8 nm. The density of scan lines was 5−7
nm/line, smaller than the tip radius to ensure that
contaminants were pushed out of the cleaned region rather
than accumulating between scan lines. After cleaning, we
replaced the cleaning tip with an 8 nm radius tapping mode tip
for imaging, which eliminated the potential for recontaminat-
ing the scanned area. Devices were imaged in tapping mode to
minimize the interaction between the imaging tip and device
surface. The imaging process did not affect the device surface,
as repeated imaging of the same area produced identical AFM
images.
Figure 1b−e shows example results of the heterostructure

before and after tip-based cleaning with a 100 nN cleaning
force. Figure 1b,c shows the topographic maps of the
heterostructure before and after tip-based cleaning, respec-
tively. Figure 1d,e shows the height profiles along the dashed
lines in Figure 1b,c, respectively. Figure 1b,d exhibits height
fluctuations in the bubble-free area of the as-transferred
heterostructure. As shown in the inset of Figure 1d, the imaged
height fluctuations have a lateral dimension of 50−100 nm and
an amplitude of ∼1 nm. Figure 1c,e exhibits a much cleaner
and smoother topography of the AFM-cleaned heterostructure,
indicating that tip-based cleaning significantly reduces surface
and interface contaminants and flattens the interfaces. The line
scan in Figure 1e exhibits an average step height of 0.7 nm
between monolayer MoS2 and bottom hBN, indicating
intimate contact between MoS2 and hBN where interface
impurities were absent.
We next examine the impact of the tip-based cleaning on the

optical and electronic properties of the monolayer MoS2 by
comparing the photoluminescence and field effect transistor
transport with and without tip-based cleaning.
First, Figure 2 compares the topography and photo-

luminescence between cleaned and uncleaned regions of a
single heterostructure. For this measurement, we fabricated a
heterostructure consisting of monolayer MoS2 encapsulated by

top monolayer hBN and 8 nm bottom hBN and performed tip-
based cleaning on half of the device to create two regions,
cleaned and uncleaned. This geometry facilitates side-by-side
comparison under the same measurement conditions. We then
measured the photoluminescence (PL) on both regions
simultaneously.
Figure 2a shows the AFM topography of the heterostructure.

The uncleaned region had a root-mean-square roughness Rrms
of 2.03 nm, while the cleaned region had a much smaller
roughness of 0.41 nm. Figure 2b−d shows the PL peak width
(full-width-at-half-maximum) map, characteristic PL spectra,
and histogram of PL peak width of monolayer MoS2 in the
cleaned and uncleaned regions. Each PL spectrum was fitted
with a Lorentzian peak (red curves in Figure 2c). Both cleaned
and uncleaned regions showed a single PL peak at 1.863 ±
0.004 eV, corresponding to the A exciton peak in monolayer
MoS2.

52,53 The cleaned region had an average PL peak width
of 70.5 ± 2.9 meV, while the uncleaned region had a peak
width of 83.7 ± 2.8 meV.
The photoluminescence of 2D materials is sensitive to strain,

average doping, and disorder.54−57 The peak width is
correlated with the disorder within the material,54,55 while
the peak position is sensitive to doping and strain.56,57 As a
result, the photoluminescence maps reveal the impacts of tip-
based cleaning on the electronic properties. First, the cleaned
region had a much smaller PL peak width than the uncleaned
region, indicating that tip-based cleaning reduces disorder in
hBN-encapsulated monolayer MoS2.

55,58 Second, no A trion
peak was detected in either cleaned or uncleaned region,
indicating low electron doping in MoS2 before cleaning and
that tip-based cleaning did not induce electron doping in
MoS2.

59 Third, there was no measurable difference in peak
positions between the cleaned and uncleaned regions,
indicating that tip-based cleaning did not significantly change
average doping or strain. With a measurement precision of 4
meV, the induced strain and doping should be less than 0.08%
and 1012 cm−2, respectively.59−61 Overall, the tip-based
cleaning reduces interface disorder and does not induce
average doping or strain.
Next, in Figures 3 and 4, we explore the optimal tip-based

cleaning force for the heterostructure, as determined by

topography and photoluminescence. In Figure 3, we monitor
changes in topography while scanning the same area of the
heterostructure with increasing contact force Fn from 30 to 90
nN. Figure 3a shows the AFM images recorded by the cleaning
tip as it scanned at each contact force. The surface roughness
Rrms values of the heterostructure enclosed by the dashed lines
in Figure 3a are listed below each AFM image. Figure 3b shows
corresponding topographical changes along the solid line in
Figure 3a. The surface roughness Rrms decreased significantly

Figure 2. (a) AFM image of monolayer MoS2 encapsulated by top
monolayer hBN and 8 nm thick bottom hBN. The upper half of the
heterostructure was processed by tip-based cleaning, while the lower
half was uncleaned. (b) PL peak width map and (c) characteristic PL
spectra with a single-peak Lorentzian fit (red curves) of hBN-
encapsulated monolayer MoS2 shown in (a). (d) Histogram of PL
peak width of monolayer MoS2 in the cleaned and uncleaned regions.

Figure 3. Critical cleaning force. (a) AFM images recorded by the
cleaning tip with increasing contact force Fn from 30 to 90 nN.
Surface roughness Rrms of the region enclosed by the dashed lines in
are listed below each AFM image. (b) Line scans along the solid line
in (a) with increasing contact force.
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when Fn was increased from 30 to 50 nN and from 50 to 70
nN but decreased only slightly from 70 to 90 nN. The height
profiles in Figure 3b also show no further topographical
changes as Fn was increased from 70 to 90 nN.
Figure 4 shows the AFM topographies and corresponding

PL peak width mappings of the same heterostructure as-
transferred, after tip-based cleaning at 70 nN, and after
additional cleaning at 140 nN. On average, the PL peak width
of monolayer MoS2 was 60.6 ± 3.0 meV as-transferred, 56.6 ±
1.7 meV after cleaning at 70 nN, and 57.0 ± 1.1 meV after
cleaning at 140 nN. Since additional cleaning at 140 nN did
not further reduce the PL peak width, 70 nN was sufficient to
optimize the PL of the heterostructure. In summary, the critical
cleaning force for the heterostructure beyond which no
improvement in topography or PL could be detected was
around 70 nN.
While 70 nN is shown in this work to be the critical cleaning

force for monolayer MoS2 covered by monolayer hBN, the
force needed to flatten heterostructures with multilayer top

hBN remains debatable. One article reports that the required
cleaning force increases with the thickness of top hBN, and a
2.1 μN force was used to flatten heterostructures with 18 nm
thick top hBN.40 Another work used a 50−150 nN force to
flatten heterostructures with up to 50 nm thick top hBN.31 The
conflicting results may be explained by their differences in
heterostructure fabrication: the former work used a water/
solvent mixture in fabrication, which resulted in a few-
nanometer-thick liquid contamination layer at the interfaces,
while the latter used dry pick-up technique with minimal
interface contamination. Future research should explore
whether the optimal cleaning force is independent of the
thickness of top hBN when the heterostructure is fabricated
using dry pick-up.
To quantify the effects of tip-based cleaning on the electrical

performance of hBN-encapsulated monolayer MoS2, we
fabricated four separate field-effect transistors on an as-
transferred heterostructure and compared their performance
as fabricated and after tip-based cleaning. Figure 5 shows these
devices. Figure 5a shows the schematic of the device structure
and electrical measurement. The device consists of a
monolayer MoS2 channel, electrical contacts for the source
and drain consisting of 30 nm gold on 5 nm nickel, a 13 nm
hBN on 285 nm SiO2 gate dielectric, and a degenerately p-
doped silicon back gate. We take advantage of a recently
reported technique, where the top monolayer hBN serves as a
tunnel layer to help inject charge carriers from contact metals
into MoS2 and thus reduces contact resistance.49,50 Figure 5b,c
shows the AFM topographies of the FETs (Devices A−D)
before and after tip-based cleaning, respectively. Surface
roughness Rrms of the MoS2 channel region decreased from
1.36 to 0.34 nm after cleaning, excluding trapped bubbles that
persisted. Figure 5d shows the transfer curves of the FETs
before (black) and after (red) tip-based cleaning.
We extracted four performance metrics of the FETs from the

transfer curves: extrinsic field-effect mobility μ = (L/WCgVds)
(dIds/dVbg), threshold voltage Vth, subthreshold swing SS, and
hysteresis H. We assumed a gate dielectric capacitance per unit
area of 285 nm thick SiO2 in series with 13 nm thick hBN (Cg

Figure 4. Determining the optimal cleaning force of the
heterostructure by photoluminescence. AFM images and correspond-
ing PL peak width maps of the same heterostructure as-transferred,
after tip-based cleaning at 70 nN, and after additional cleaning at 140
nN. Average PL peak widths are listed below each PL map. Variations
of outlines in PL maps resulted from misalignment and/or stage shift
during measurement.

Figure 5. (a) Cross-sectional view of the FETs, along with the electrical connections to characterize the devices. AFM topography of the FETs (b)
before and (c) after tip-based cleaning. (d) Transfer curves of the FETs before (black) and after (red) tip-based cleaning in both linear and semi-
log scale. Vds = 0.1 V. (e) Extrinsic mobilities of the FETs before and after tip-based cleaning.
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= 11.6 nF/cm2).62 The tip-based cleaning affects mobility,
threshold voltage, subthreshold swing, and hysteresis of the
FETs measured in air. As shown in Figure 5e, the extrinsic
mobility of every FET consistently increased after tip-based
cleaning, by 60−93%. To exclude the effect of contact
resistance, we further extracted the intrinsic mobilities using
the Y-function method,75 as shown in Figure S7. On average,
before tip-based cleaning, the four FETs had an extrinsic
mobility of 21 ± 2 cm2/Vs, an intrinsic mobility of 24 ± 3
cm2/Vs, a threshold voltage of −54.2 ± 4.5 V in forward sweep
and −52.6 ± 4.8 V in reverse sweep, a subthreshold swing of
3.6 ± 1.3 V/dec, and a hysteresis of 1.6 ± 0.9 V. After tip-
based cleaning, the FETs had an extrinsic mobility of 38 ± 6
cm2/Vs, an intrinsic mobility of 46 ± 5 cm2/Vs, a threshold
voltage of −35.7 ± 1.0 V in forward sweep and −10.7 ± 5.5 V
in reverse sweep, a subthreshold swing of 7.0 ± 1.5 V/dec, and
a hysteresis of 25.1 ± 5.3 V.
We ascribe the improvement in mobility to reduced

interface disorder by tip-based cleaning. Cleaning and
flattening of the interfaces reduced local strain fluctuations,
spatial inhomogeneities in dielectric screening, and interface
Coulomb impurities.4,6,7 As shown in a recent study,63 the
removal of surface contaminants does not improve the electron
mobility of MoS2 likely because ambient adsorbates could
easily readsorb onto the surfaces after tip-based cleaning and
still scatter charge carriers.64−66 Unexpectedly, threshold
voltage, subthreshold swing, and hysteresis are all increased
after tip-based cleaning. The threshold voltage increased by an
average of 18.4 V in forward sweep and 41.9 V in reverse
sweep, the subthreshold swing nearly doubled, and the
hysteresis increased by an average of 23.5 V. Previous reports
show that annealing of MoS2 or graphene on hBN reduces p-
type doping, inducing a negative shift in threshold
voltage.8,13,38 It is peculiar that the initial hysteresis before
cleaning is small since these devices had only a monolayer of
hBN on top, compared with the much thicker layers of hBN
>10 nm typically used in encapsulation.38,67 We hypothesize
that the positive shift in threshold voltage and the increase in
subthreshold swing and hysteresis are all resulted from
increased ambient effects after tip-based cleaning. The initial
surface adsorbates that were cleaned away degraded the
mobility but were relatively immobile. After tip-based cleaning,
the effects of ambient adsorbates increased. Ambient
adsorbates served as p-type dopants and charge traps,64−66

leading to positive shift in threshold voltage and increased
subthreshold swing and hysteresis after tip-based cleaning. In
general, the increased role of ambient adsorbates is a tradeoff
of using the monolayer top hBN, which had the advantage of
reduced contact resistance49,50 and enabled easy visualization
of the interfaces. For applications, tip-based cleaning should be
combined with thicker top hBN encapsulation.
For the device in Figure 5, we deposited the electrodes

before cleaning to enable before and after comparison of
device behavior. However, any residue or interfacial disorder
under the electrodes will still affect contact resistance and thus
limit device performance.68 To examine the role of precleaning
the interface, we fabricated a FET in the tip-cleaned region of
the heterostructure shown in Figure 2. Figure 6 shows the
transfer curve of the FET characterized in air in a two-probe
configuration in which a drain-source bias was applied across
the outer two leads, leaving the inner two leads floating. The
inset shows the SEM image of the FET, exhibiting a channel
width W of 2.42 μm and a channel length L of 0.99 μm. The

device achieved an extrinsic electron mobility of 73 cm2/Vs,
which is among the highest reported room-temperature
extrinsic two-probe mobility values for monolayer MoS2 (see
Table S1).14,26,38,50,69−74 We extracted the intrinsic mobility
without the effect of contact resistance using the Y-function
method75 (see Figure S6) and obtained a high intrinsic
electron mobility of 102 cm2/Vs. If we account for the
differences in device geometry and Vds (0.1 V in Figure 5 and 1
V in Figure 6), the transfer curve in Figure 6 is not very
different from the ones after tip-based cleaning in Figure 5.
The device in Figure 6 showed higher mobility than the
devices in Figure 5, which likely resulted from lower contact
resistance. However, we cannot rule out the possibility of
device-to-device variations, which is ubiquitous in both
exfoliated and synthetic monolayer MoS2.

71,72,76 Since top
monolayer hBN is not sufficiently thick to screen charged
impurities from ambient air,77 which significantly limit the
electrical performance of monolayer MoS2,

64,65 we expect
further improvement in electron mobility after passivation with
thick hBN or high-k dielectrics.4,69,74,78

■ DISCUSSION
The major advantage for AFM tip-based cleaning and
smoothing of the van der Waals heterostructure is that it can
be applied to a wide variety of van der Waals heterostructures
assembled by various techniques. Tip-based learning is purely
mechanical and insensitive to the chemistry of the contami-
nants and 2D layers. The cleaning procedure could be used not
only for lateral FETs like hBN-encapsulated MoS2 but also for
vertical heterojunction transistors,79−81 which are increasingly
important for high-frequency applications. Other types of van
der Waals heterostructures can also benefit from reduced
interface impurities by tip-based cleaning.11,41,82 AFM tip-
based cleaning also has some limitations. First, it is challenging
to remove bubbles much larger than the AFM tip radius. Thus,
this cleaning technique is more suitable with van der Waals
heterostructures without micron-scale interface impurities.
Other techniques such as thermal annealing31,38 and micro-
dome cleaning83 can be used to remove microbubbles trapped
in between van der Waals heterostructures. Second, if the top
2D layer is fragile, the cleaning tip could damage the 2D
material before interface contaminants are removed. Third, this
technique is limited by low throughput (∼6 μm2/min in this
work), which is typical of all scanning probe-based
techniques.84

■ CONCLUSIONS
We demonstrated reliable cleaning and smoothing of the
interfaces of hBN-encapsulated monolayer MoS2, by scanning
the heterostructure with an AFM tip in contact mode. The

Figure 6. Transfer curve of a FET fabricated in the tip-cleaned region
of the heterostructure shown in Figure 2. Vds = 1 V. Inset: SEM image
of the FET.
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AFM tip-based cleaning reduced interface disorder as
evidenced by reduced height fluctuations of the hetero-
structure and reduced photoluminescence linewidth of
monolayer MoS2. The mobility of hBN-encapsulated mono-
layer MoS2 improved substantially after tip-based cleaning.
Combining the results from AFM topography, photolumines-
cence, and back-gated field-effect measurements, we infer that
tip-based cleaning enhances the mobility of hBN-encapsulated
monolayer MoS2 by reducing interface disorder. Finally, we
surmise that tip-based cleaning will also significantly improve
the electrical properties of other mechanically assembled van
der Waals heterostructures by cleaning and flattening their
interfaces.

■ METHODS
Fabrication of the Heterostructures. We assembled and

transferred the heterostructures onto SiO2 on Si substrates
using established van der Waals pick-up techniques.19,27 First,
we exfoliated 2D flakes onto separate SiO2 on Si substrates by
Scotch tape. We used 90 nm thick oxide substrates with hBN
exfoliation85 and 285 nm thick oxide substrates with MoS2
exfoliation for sufficient optical contrast to identify number of
layers. We used monolayers for top hBN and 8−20 nm thick
layers for bottom hBN. Atomic force microscopy confirmed
the monolayer nature of top hBN (see Figure S3). Second, we
prepared a PDMS lens on a glass slide and coated a layer of the
PC film onto the PDMS lens.48 Then, we fixed the glass slide
with PC on PDMS stamp onto a micromanipulator. Third, we
sequentially picked up 1L hBN, 1L MoS2, and ML hBN with
the PC film on a PDMS lens at 90 °C. Fourth, we contacted 1L
MoS2 encapsulated by top 1L hBN and bottom ML hBN with
the final 285 nm SiO2 on the Si substrate at 90 °C and melted
the PC film at 170 °C to complete transfer. Last, we removed
the PC film on the heterostructure in a chloroform bath at
room temperature for 24 h.
Tip-Based Cleaning and Measurements. All tip-based

cleaning and measurement experiments were performed using
an Asylum MFP−3D AFM system. For all cleaning experi-
ments, we used a cleaning force of 70−140 nN and a scan
speed of up to 28 μm/s. The cleaning tips (RFESP-75, Bruker)
had a nominal tip radius of 8 nm and a spring constant of 3 N/
m. The density of scan lines was 5−7 nm/line, smaller than the
tip radius to ensure that contaminants were pushed out of the
cleaned region rather than accumulating between scan lines.
After cleaning, we replaced the cleaning tip with an 8 nm
radius tapping mode tip (HQ:NSC15/AL_BS, MikroMasch)
for imaging, which eliminated the potential for recontaminat-
ing the scanned area.
Photoluminescence Measurements. We performed PL

measurements on a confocal Raman microscope (Nanophoton
Raman 11) using a 532 nm laser with a 100× objective at an
excitation power of 0.5 mW with a grating of 600 L/mm. The
lateral resolution of the equipment was 350 nm. The PL map
in Figure 2 had a pixel size of 0.2 μm and an acquisition time of
0.1 s per pixel. The PL maps in Figure 3 had a pixel size of 0.2
μm and an acquisition time of 3 s per pixel. Longer acquisition
time increased signal but induced obvious stage drift. We
performed all the measurements at room temperature in
ambient laboratory conditions.
Fabrication of MoS2 Transistors and Electrical

Measurement. First, we patterned large contact pads and
leads consisting of 30 nm Au on 5 nm Ni onto a 285 nm SiO2
on the degenerately p-doped silicon substrate using optical

lithography. Second, we transferred the hBN-encapsulated
monolayer MoS2 onto prepatterned SiO2 on the Si substrate.
Third, we defined the contact electrodes to MoS2 consisting of
30 nm Au on 5 nm Ni by e-beam lithography (eLINE, Raith)
using a polymethyl methacrylate (PMMA) resist (A4 950k,
Microchem) at an accelerating voltage of 20 kV, a beam
current of 30 pA, and a dose of 240 μC/cm2. We performed all
the electrical measurements in air at room temperature using a
semiconductor parameter analyzer (Agilent, 4155C).
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