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Localized Dielectric Loss Heating in 
Dielectrophoresis Devices
Tae Joon Kwak1,6, Imtiaz Hossen2,6, Rashid Bashir3, Woo-Jin Chang1,4* & Chung Hoon Lee2,5*

Temperature increases during dielectrophoresis (DEP) can affect the response of biological entities, 
and ignoring the effect can result in misleading analysis. The heating mechanism of a DEP device is 
typically considered to be the result of Joule heating and is overlooked without an appropriate analysis. 
Our experiment and analysis indicate that the heating mechanism is due to the dielectric loss (Debye 
relaxation). A temperature increase between interdigitated electrodes (IDEs) has been measured with 
an integrated micro temperature sensor between IDEs to be as high as 70 °C at 1.5 MHz with a 30 Vpp 
applied voltage to our ultra-low thermal mass DEP device. Analytical and numerical analysis of the 
power dissipation due to the dielectric loss are in good agreement with the experiment data.

Temperature is the basic physical property in living cells that controls biological responses and cellular func-
tions1,2. Thus, the amount of energy expenditure required for the normal functioning of the cells and organs is 
reflected in their temperature3. Moreover, cellular reactions are controlled by small temperature changes (e.g. 
5.5–6 °C), and continuous heat exposure causes cell death4,5. Therefore, better awareness and attention to temper-
ature are demanded in biomedical studies to diagnose or to understand the metabolism of living cells.

Dielectrophoresis (DEP) has been used in various biomedical applications such as drug delivery and discov-
ery6–8, particle separation and sorting9–11, cell patterning12–14, and intermolecular force spectroscopy15,16 due to the 
benefits of strong controllability, easy operation, and high efficiency. Also, the contact-free feature of DEP results 
in less damage to the particles, compared with conventional microfluidic and mechanical techniques17. The spatial 
gradient of the non-uniform electric field enables the manipulation of dielectric particles by DEP. Typically, the 
DEP is generated by two or more electrodes integrated on a substrate or an insulating structure. However, manip-
ulating sub-micron particles and low dielectric property bioparticles requires relatively high applied potentials 
to generate an electric field sufficient to manipulate particles, and the high potentials may cause heating, which 
may result in a temperature rise inside the device. There are two heating mechanisms during DEP device opera-
tion. One is the Joule heating caused by the conductivity of the media. The other is the dielectric loss heating of 
the dielectric material between the DEP electrodes. While Joule heating is dominant when electrical current is 
flowing between bare electrodes exposed to the conductive media, the dielectric loss heating is dominant when the 
electrodes are electrically insulated from the media and the conductivity of the media is relatively low.

Joule heating is a function of electrical current and the electrical conductivity of the media and is independ-
ent of the operation frequency of a DEP device. On the other hand, the dielectric loss heating is a function of 
the operation frequency. At operation frequencies less than 500 kHz, the dielectric loss heating is negligible in 
our device. At frequencies higher than 500 kHz, the dielectric loss heating gradually increases and saturates at 
about 10 MHz. At the saturation frequency, the maximum dielectric loss can be approximated with the Debye 
relaxation time constant, τd. τd is a function of the dielectric constant of the material of the substrate or media. In 
a typical DEP operation frequency range, the Debye relaxation time constant of the dielectric constituent of the 
device is dominant over that of the media because the media is most likely water (buffer), which has a much larger 
Debye relaxation time constant than typical substrates (glass, polymer, and silicon-based materials). The dielec-
tric loss heating presented in this paper at a fixed operating frequency can explain the increased temperature in 
microchips with a high spatial resolution18, the reduction of the risk of material breakdown in the Joule heating 
method19, and the heating of a droplet in a microchip to perform DNA melting and detection of single-base 
mismatches20.
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Numerical and experimental analyses of Joule heating in DEP devices have shown the temperature effects 
on the conductivity of the medium, electrothermal flow, and DEP trapping forces21–23. Several DEP studies 
tried to minimize the Joule heating by using low-conductivity buffer solutions9,24, increased or decreased device 
geometric scale25–27, low voltage operation with three-dimensional structure28, and coating electrodes with 
insulation layer29–31. In addition, various methods have been applied to measure the heat generation within the 
DEP device. Commercially available thermometers16,32,33 were used to measure spatially averaged temperatures 
in DEP devices by attaching them to the chip surface. These average temperature measurements are suitable 
for a large area, rather than a micro-scale local area. A thermo-dependent fluorescent dye24,34,35 was used to 
measure temporal and spatial temperature measurements with less than 1 °C resolution in dielectrophoretic 
devices; however, dye-based measurement methods could leave chemical residues in the fluid channel. This 
might affect the metabolism of biological cells due to environmental sensitivity, and it was difficult to meas-
ure the temperature of these particles in real time. Impedance and resistance measurements24,36 were used to 
measure temperature changes and dielectric losses in the electric field as a function of frequency in real time; 
however, since the measurement electrodes were in contact with media, only the Joule heating induced from 
the conductivities of the media was focused on.

A resistive temperature detector (RTD) is a temperature sensor widely used to measure temperature changes 
in microchip devices, owing to its integrability, high accuracy, high linearity, and fast response time37–39. 
Integrated RTDs have been used to monitor local temperatures in DEP devices. For example, Schwamb et al.40 
used a platinum RTD to measure the thermal conductivity of reduced graphene oxide flakes deposited on a DEP 
device. Bhattacharya et al.41 monitored the polymerase chain reaction thermal cycling efficiency and heating and 
cooling rates of captured bacteria on a DEP device. Gallo-Villanueva et al.42 used a copper RTD to measure Joule 
heating effects in insulator-based DEP devices.

While the temperature increase during DEP is well known, the previous studies with a DEP device have 
focused on mainly temperature measurements and considered that the temperature increase was due to Joule 
heating without detailed justification. However, the dielectric loss from the dielectric material between electrically 
insulated IDEs is found to be the main source of the temperature increase in DEP devices.

In this paper, considerable heat generation due to the dielectric loss in a DEP device is presented. While 
Joule heating is independent of the operating frequency, the dielectric loss heating is a function of the operating 
frequency. The dielectric loss is due to the imaginary part, ε″, of the dielectric constant of materials. ε″ is a func-
tion of frequency, and the power loss due to the dielectric loss is also a function of frequency. The power loss is 
dissipated as heat in the device. The Debye dielectric loss theory agrees very well, R2 = 0.9998, with the measured 
temperature increase on the device.

Our device for this study consists of interdigitated electrodes (IDEs) commonly used in DEP. A thin nickel 
film RTD is integrated between the IDEs. The temperature increase due to the dielectric loss can be as high as 
70 °C without any liquid in the DEP device when 30 Vpp is applied to the IDEs. With a buffer solution and a 30 Vpp 
voltage applied to the IDEs, the temperature increase is ~10 °C, which is high enough to affect biological states of 
biological entities.

Materials and Methods
Figure 1 shows the DEP device with an integrated nickel thin film RTD. The IDEs and RTD are integrated on a 
500 nm thick SiN membrane. The electrodes and the RTD are made of a 25 nm thick nickel film. The device is 
fabricated with a standard micromachining technique, and the detailed fabrication method is described else-
where43–46. In brief, the inlet, outlet, and channel are formed by 30% w/w KOH etch at 60 °C bath temperature. 
The DEP electrode and the RTD are integrated on the SiN membrane side with a 25 nm thick metal film evapo-
rated by a thermal evaporator and patterned by Ni etchant (Transene Company Inc.). The microfluidic channel is 
formed by placing a thin (~1 mm thick) PDMS film on the channel side of the Si chip.

The two IDEs of the DEP device are connected to a voltage amplifier (TREK 2100HF), which amplifies 
a function generator (Keysight 33220 A) signal. The output voltage of the amplifier is monitored by an 
oscilloscope (Keysight DSOX2004A). The RTD is configured as a 4-wire measurement with a Keithley 2400 
source/meter unit. The RTD resistance at room temperature (18 °C) is 3104 Ω. The temperature coeffi-
cient of resistance (TCR) is 0.0026/°C37. The RTD is biased with 0.1 mA DC current. The RTD has 0.002 K 
temperature resolution46. All the electronics and data acquisition are controlled and collected by a LabView 
program.

The DEP excitation and temperature measurement are set as follows. A desired voltage of 5 Vpp from the 
amplifier at a fixed frequency of 100 kHz is applied to the DEP device for 1.5 second. Then the voltage is turned 
off. After this, the RTD measures the temperature for 1.5 second. The sequential DEP excitation and temperature 
measurement precludes any electrical interference between them. The DEP excitation and temperature measure-
ment cycle is repeated with an increased amplifier voltage at the same frequency. For example, 10 Vpp at 100 kHz 
is applied for 1.5 seconds followed by temperature measurement for 1.5 seconds. The excitation and measure-
ment cycle are repeated for 5 different voltages at the frequency. Once the temperature measurement for the 
voltage range from 5 Vpp to 30 Vpp is done, the applied frequency is increased to 200 kHz, and the temperature 
measurement is repeated with the same voltage range. The excitation and measurement cycle are repeated for the 
frequency range from 100 kHz to 2 MHz at increments of 100 kHz. The raw temperature measurement data of 
the DEP device filled with PBS in the channel is shown in Fig. 2(a). Figure 2(b) is a close-up of the red dot boxed 
area in Fig. 2(a). The temperature is measured ~0.1 second after the voltage from the amplifier is turned off. The 
thermal time constant, τth is shown in Fig. 2(c), which is a close-up of the red dot boxed area in Fig. 2(b). The 
dotted curve in Fig. 2(c) is a fit of the data with = ⋅ +τ−T A e Bt/ th , which can be used for a first order thermal 
system.
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Results and Discussions
As shown in Fig. 2(a), the applied voltages at each frequency de due to the loading effect of the capacitive load 
(DEP). Therefore, the data is re-plotted as the maximum temperature increase divided by the applied voltage 
squared (~ΔT per input power) as a function of the excitation frequency as shown in Fig. 3. The ΔT is defined as 
Tmeasured − Tabmient(18 °C). The ΔT per input power of three samples (DI water, salt (NaCl) water (4%), and PBS) is 
shown in Fig. 3. The temperature increases per unit power for all three samples are independent of the ion con-
centration in the media. This is another strong indication that the heating mechanism is due to the dielectric loss.

The heat generation in a dielectric material between electrodes can be analyzed with the Debye relaxation. Our 
DEP device is integrated on a SiN membrane. The SiN film is a good dielectric material (low electrical conductiv-
ity). The DEP device configuration can be modeled as a non-conventional capacitor consisting of exposed side by 
side plates with multiple dielectric materials (electrode-membrane-solution-membrane-electrode) in between.

The apparent power flow into the capacitor is,

ω ω ε ε= = = ′ − ″⁎P VI jV C jV A
d

j( ) (1)t
2 2

where Pt is the total power delivered to the capacitor, V is the voltage applied, C* is the complex conjugate of 
capacitance, ω is the applied angular frequency, A is the area of the capacitor, d is the distance between electrodes, 
ε′ is the AC capacity (real part of the permittivity), and ε″ is the dielectric loss factor (imaginary part of the 
permittivity).

The heat generated by the Debye relaxation is described by the dielectric loss factor,

ω ε= ″P V A
d (2)d

2

where Pd is the power dissipated in the capacitor. The dielectric loss47 can be expressed as
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Figure 1.  Device overview. (a) Isometric view of the device. IDEs, RTD, and electrical contacts are integrated 
on the top surface of the SiN membrane. Inlet/outlet tubing is mounted on the inlet/outlet holes (not 
shown). IDEs, RTD, and electrical contacts are electrically isolated from the channel by the 500 nm thick SiN 
membrane. (b) Channel side of the device. Silicon is etched to form the main channel and inlet/outlet with feed 
through. A 1 mm thick PDMS is placed to complete the channel. (c) Cross-sectional view of the device showing 
the channel and IDEs/RTD. (d) Close-up optical photograph of the top view of IDEs and RTD on the SiN 
membrane.

https://doi.org/10.1038/s41598-019-55031-y


4Scientific Reports |         (2019) 9:18977  | https://doi.org/10.1038/s41598-019-55031-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 2.  Measured temperature data as a function of time. The channel is filled with PBS. (a) Measured 
temperature data. (b) Close-up view of the dotted box in (a). Voltages are applied to IDEs for 1.5 s, and then 
the RTD measures the temperature for 1.5 s. The measurement cycle is repeated for the frequency range from 
100 kHz to 2 MHz at frequency increments of 100 kHz. (c) Close-up view of the dotted box in (b). The 
temperature data is fitted with = ⋅ +τ−T A e Bt/ th , which is the temperature cooling of a first order system. 
The thermal time constant, τth, is 0.301 s when the channel is filled with PBS. The τth is ~0.2 s when the 
channel is empty.

https://doi.org/10.1038/s41598-019-55031-y


5Scientific Reports |         (2019) 9:18977  | https://doi.org/10.1038/s41598-019-55031-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

ε ε ε
ωτ

ωτ
″ = −

+∞( )
1 ( ) (3)

d

d
0 2

where, ε0 is the permittivity at frequencies below dipole relaxation, ε∞ is the permittivity at frequencies above 
dipole relaxation, and τd is the Debye relaxation time constant.

The power, Pd, is dissipated in the capacitor. Since the power is applied for a given time to the capacitor, the 
step response of a first-order system can be used to obtain the temperature response using Fourier’s Law of Heat 
conduction.

The temperature increase or decrease in the capacitor by a step power input is,

τ∆ = ⋅ − −T t P R t( ) [1 exp( / )] (4)d t th

or
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Figure 3.  Measured ΔT per unit power (~V2) of PBS, Salt (NaCl) water (4%), and DI water. No obvious 
difference between three samples is noticeable, indicating that no Joule heating mechanism is involved. 
COMSOL is used to calculate the power dissipation (loss power) in the SiN dielectric located between the DEP 
electrodes. Since the power dissipation is proportional to the temperature, the calculated results are in good 
agreement with the measured data.
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Figure 4.  Temperature increase per applied voltage squared (unit power) due to the dielectric loss in a DEP 
device as a function of frequency. The maximum ΔT for PBS and no media in the channel is 9 °C and 45 °C, 
respectively, at an applied voltage of 26 Vpp. The maximum ΔT with PBS in the channel is lower due to the larger 
thermal mass of PBS compared to that of air. (a) The temperature is measured with PBS solution in the channel. 
The measured data is in good agreement with the dielectric loss analysis (Eq. 8). The blue circles are measured 
data. The red dotted line is the power dissipated in the capacitor (Eq. 8). The black dotted line is the dielectric 
loss factor (Eq. 3). The regression of the data fit is higher than 0.999. (b) The same plot with no media in the 
channel (empty). The data clearly shows that the temperature increase is due to the SiN dielectric loss since no 
media is in the channel.
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τΔ = ⋅ −T t P R t( ) exp( / ) (5)d t th

where ΔT(t) = Tcap(t) − Tamb, Tcap(t) is the temperature of the capacitor, Tamb is the ambient temperature, Rt is the 
thermal resistance between the capacitor and ambient, and τth is the thermal time constant. The time constant, 
τth, can be measured directly as shown in Fig. 2(c) and has values of ~0.2 and ~0.3 second with air and PBS, 
respectively. The time period of the applied power to the capacitor is ~1 second. Therefore, the temperature of the 
capacitor reaches the steady state temperature, ΔTss. The thermal time constant is obtained by fitting Eq. 5 with 
the data.

From the dielectric loss and the first order thermal analysis, the steady state temperature increase from the 
ambient temperature of the capacitor can be expressed as,

Δ =T P R (6)ss d t

Assuming all the dielectric loss is converted to heat, the steady state temperature can be written as,

ε ε
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τ ω
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ΔTss/V2 as a function of frequency (f = ω/2π) is shown in Fig. 4.
The data is fit with the dielectric power loss equation,

=
⋅

+ ⋅
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b f
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[1 ( ) ] (8)

2

2

with a = 0.0152 and b = 1.1 · 10−6. a is ε ε τ− ∞R A d( )/t d0  in Eq. 7. b is the Debye time constant, τd, in seconds. The 
regression, R2, is higher than 0.999, indicating the analysis is in good agreement with the data.
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To evaluate the dependencies of the heat generated by the dielectric loss and the power dissipation on applied 
potentials and frequencies, we analyzed the thermal characteristics of the DEP device with finite element analysis 
(FEA) numerical simulations using COMSOL Multiphysics software (v5.2, COMSOL AB, Stockholm, Sweden) 
with the AC/DC and the heat transfer modules.

The materials used in the simulation were a Ni film for the electrodes, a SiN membrane for the insulation layer, 
and water as media (the same as used in the experiments). The basic properties from the COMSOL Multiphysics 
Materials Library were used. AC electrical potentials of 100 kHz to 2 MHz were applied to the electrodes. While a 
constant value of the real part of the relative permittivity (ε′ from Eq. 1) at different frequencies was assigned, the 
values of the imaginary part of the relative permittivity (ε″ from Eq. 3) at different frequencies were assigned to the 
SiN layer. The geometry used in the simulation was identical to the experimental setup. The simulation covered 
around 100 μm × 500 μm area on the insulation layer for efficient computation. The multi-physics equations were 
solved by the frequency-transient analysis for 4.45 × 106 degrees of freedom with a minimum element size of 2 μm.

The three-dimensional simulations successfully demonstrate the heat generation in the device when an AC 
signal is applied to the IDEs. The results are shown in Fig. 5. Figure 5(a) shows a perspective view of the tempera-
ture increase in the device. We assume that the power dissipation due to the dielectric loss in Fig. 4 is mostly con-
verted to heat between the IDEs in Fig. 5, as was previously approximated by the first order thermal system using 
Fourier’s Law of Heat Conduction in the analytical analysis. This result is also clearly shown in Fig. 5(b), which is 
the cross-sectional view of the middle of the device in Fig. 5(a). The simulation results show clearly that the high-
est temperature increase occurs on the SiN membrane between the IDEs. Figure 5(c) is the numerically calculated 
temperature profile from the center of the SiN membrane surface to the media in the z-direction. The temperature 
in the microchannel gradually decreases along the z-direction from the surface of the SiN membrane, which is 
heated by the dielectric loss. The temperature difference between the SiN membrane and the top of the micro-
channel (~20 μm away from the membrane) is about 9 °C. As shown in Fig. 6, the strongest electric field (most 
potential drop) is within the SiN membrane near the electrodes. The potential drop in the media is much less than 
in the SiN membrane. Therefore, the Joule heating in the media is a secondary effect in our device configuration.

Conclusions
The resistive temperature detector based temperature measurement method and the Debye relaxation analysis 
find that significant heat is generated when an alternating voltage is applied to the electrically insulated inter-
digitated electrodes based dielectrophoretic device. The experimental results are in good agreement with the 
theoretical and numerical calculations.

The experimental results and analysis indicate that the origin of the heat generation in the DEP devices with 
electrically insulated electrodes is the Debye relaxation rather than Joule heating.

The approaches to avoid heating in the past studies using DEP have mainly tried to reduce Joule heating; 
however, we suggest that the dielectric characteristics of material have to be considered in order to reduce the die-
lectric loss and to reduce heat generation in microfluidic devices.
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The heat generation from the Debye relaxation is highly localized between the IDEs as shown in Fig. 5 and 
is more reliable than that from Joule heating, which causes the electromigration in a heating element for micro/
nano-scale devices.

The localized dielectric heating process can be used as a powerful tool in a wide range of biological studies, 
because the heating can be easily controlled by the design, driving voltage/frequency, and materials used in the 
micro/nano-scale devices.
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