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Sepsis, as a leading cause of death worldwide, relies on systemic inflammatory response syndrome (SIRS)
criteria for its diagnosis. SIRS is highly non-specific as it relies on monitoring of patients’ vitals for sepsis di-
agnosis, which are known to change with many confounding factors. Changes in leukocyte counts and
CD64 expression levels are known specific biomarkers of pro-inflammatory host response at the onset of
sepsis. Recently, we have developed a biosensor chip that can enumerate the leukocyte counts and quan-
tify the neutrophil CD64 expression levels from a drop of blood. We were able to show improved sepsis di-
agnosis and prognosis in clinical studies by measuring these parameters during different times of the pa-
tients' stay in hospital. In this paper, we investigated the rate of cell capture with CD64 expression levels
and used this in a multivariate computational model using artificial neural networks (ANNs) and showed im-
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proved accuracy of quantifying CD64 expression levels from the biosensor (n = 106 whole blood experi-
ments). We found a high coefficient of determination and low error between biosensor- and flow
cytometry-based neutrophil CD64 expression levels using multiple ANN training methods in comparison to
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those of univariate regression commonly employed. This approach can find many applications in biosensor
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Introduction

Sepsis is a leading cause of mortality worldwide and is a com-
plicated immunological condition in response to pathogenic
infections."” In the United States, every year more than one
million people are diagnosed with severe sepsis and one third
or more of them die.> The main contributing factor to these
statistics is the unavailability of an accurate and sensitive diag-
nostic test for sepsis.” Systemic inflammatory response syn-
drome (SIRS) criteria are currently used as a diagnostic stan-
dard in hospitals and rely on monitoring of patients' vitals
(temperature, respiratory rate, heart rate) and white blood cell
counts.* These parameters are highly non-specific and may
change because of many confounding factors. Increased CD64
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data analytics by utilizing multiple features of the biosensor's data for output determination.

expression on neutrophils (nCD64) is known to be a specific
biomarker for detecting an early inflammatory response in pa-
tients and has shown improved sensitivity and specificity to
sepsis diagnosis.”™'° Early diagnosis of sepsis is extremely crit-
ical as every hour the appropriate antimicrobial treatment is
delayed, the patients’ survival rate decreases by 7.7%.""

In clinical laboratories, blood cell counting is commonly
conducted using a hematology analyzer and specific leuko-
cyte enumeration is performed using flow cytometers. Fur-
thermore, quantification of cell surface receptor expression
requires additional expertise in data analysis and is also com-
monly carried out using flow cytometers. Operating these in-
struments requires manual sample handling and significant
training of laboratory personnel to achieve reproducible pro-
tocols. Point-of-care (POC) microfluidic sensors provide at-
tractive alternatives and significant work has been performed
to develop POC cell enumerating sensors. Microfluidic optical
detection used waveguides and photodetectors to enumerate
cells by looking at their scatter plots based on their size and
granularity, while specific cells were counted by their fluores-
cence labelling and subsequent optical detection and
imaging.’>™® On the other hand, electrical cell counting re-
quires miniaturized Coulter counters aligned with micro-
fluidic channels.’®" Cells have been investigated at multiple
frequencies to differentiate leukocytes based on their size
and membrane capacitance.’®'® Furthermore, specific
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leukocytes can also be enumerated by their specific tagging  levels for their respective cell lines.>" However, these devices
using labeled microparticles to increase the corresponding  haven't quantified expression levels from whole blood with-
impedance signature of the desired cells."® Furthermore, out manual processing or sample spiking. Mathematical
antigen expression-based cell capture in microfluidic devices = modeling of expression-based cell capture has also been pre-
has been reported by Murthy et al. by capturing high-  viously reported.>*>*

expressing CD31 cells®® and Pappas et al. by capturing Ramos Our group has developed POC microfluidic biosensors
B and HuT 78 T lymphocytes based on CD71 expression based on “differential immunoaffinity capture technology”
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Fig. 1 (a) Sepsis biosensor schematic for enumerating leukocytes and quantifying CD64 expression levels from 10 pL of whole blood (adapted
from ref. 30). Cells get captured based on the nCD64 expression level.*° Pulse amplitude histogram obtained between entrance and exit counters
showing granulocyte and monocyte expressing CD64 cell capture,® (b) comparison between nCD64 values obtained from the biochip and flow
cytometry control (univariate regression with R? = 0.85),%° (c) Bland-Altman analysis of data in b, (d) numbers of leukocytes counted at entrance
and exit electrical counters are shown over time using a BSA blocked chamber. (e) Numbers of leukocytes counted at entrance and exit electrical
counters are shown over time using an anti-CD64 antibody adsorbed chamber.
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and enumerated complete blood cell counts (total leukocyte
counts and their differentials, erythrocyte counts and plate-
lets), specific leukocyte counts (CD4+ and CD8+ lymphocytes
for HIV/AIDS diagnostics) and antigen expression quantifica-
tion (CD64 expression levels for sepsis diagnosis) from a drop
of whole blood in around 30 min.>*° Leukocyte enumera-
tion is based on Coulter counting and impedance analysis of
cells.”® For specific leukocyte enumeration, we differentially
count cells before and after the desired cells are captured in
an immunoaffinity capture chamber.>®**° Recently, we devel-
oped a ‘sepsis biosensor’ capable of enumerating leukocytes
and nCD64 expression levels from patients’ blood samples.*’
CD64 expressing cells were captured in a chamber based on
their expression levels and the differential counts were di-
rectly correlated with the nCD64 expression levels.*® The
CD64 value from the biosensor is based on univariate (differ-
ential capture of CD64 expressing cells) regression.*°

In this article, we investigated the rate of cell capture in
comparison to CD64 expression values and used this as an ad-
ditional parameter to determine biosensors’' nCD64 expression
values by employing multivariate regression using artificial
neural networks. We used different training methods includ-
ing Levenberg Marquardt, Bayesian regularization, and scaled
conjugate gradient. Multivariate regression using artificial neu-
ral networks has shown improved accuracy, correlation coeffi-
cients and mean squared error in comparison to univariate
and standard multivariate linear regression. We conducted
this computational analysis on 106 whole blood experiments
performed on blood samples collected from SIRS positive or
infection suspected patients at Carle Foundation Hospital, Ur-
bana. Experimental data are used from our recent study.*

Experimental setup

Our biosensor is based on differential immunocapture tech-
nology by performing differential cell counts (electrical) and
affinity-based cell capture. Fig. 1a shows the overall sche-
matic of our sepsis biosensor.*®> Whole blood (10 uL) is in-
fused into the sensor along with lysis buffer to effectively lyse
erythrocytes for a total lysis time of 6 5.*° A quenching buffer
is then infused into the biosensor to preserve the remaining
leukocytes and maintain the osmolarity of the solution. Leu-
kocytes pass through the microfluidic channel to which the
microfabricated metal electrodes are aligned (fabrication pro-
cedures are given in our earlier papers).>*° As a single leu-
kocyte passes through the electrical counter, it generates an
electrical voltage signal (a bipolar pulse). The peak amplitude
of the pulse is directly proportional to the cell size. This re-
sults in lymphocytes (6-9 um in diameter) producing smaller
pulses as compared to granulocytes and monocytes (10-15
um in diameter). Leukocytes then flow through the
immunoaffinity capture chamber to which anti-CD64 (clone
10.1) monoclonal antibody is adsorbed. CD64 leukocytes be-
come captured based on their expression level. The
remaining leukocytes are counted again and the difference of
counts is directly proportional to nCD64 expression levels.*°
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Results
CD64 expression-based cell capture

The pulse peak amplitude histogram of both entrance (green)
and exit counters (red) is shown in Fig. 1a.>° Lymphocytes (6-9
pm) can be easily distinguished from granulocytes and mono-
cytes in amplitude histograms owing to their smaller size. Fur-
thermore, lymphocytes weren't captured in the chamber as
they didn't express the CD64 antigen on their surface. How-
ever, granulocytes and monocytes were captured in the cham-
ber based on their CD64 antigen expression levels.*® Earlier,
we have performed experiments on whole blood samples from
our biosensor and correlated the cell capture percentage and
CD64 expression levels.*® Fig. S11 shows a linear correlation
between the percentage of cell capture and CD64 expression
levels (n = 106) obtained from a flow cytometer.>® Subse-
quently, we performed univariate regression and 3-fold cross-
validation with 1000 times random sample selection on the
granulocyte + monocyte capture percentage data vs. CD64 ex-
pression values.’® Fig. 1b shows the corresponding linear cor-
relation plot between biosensor's nCD64 expression values and
control nCD64 values obtained from the flow cytometer.>® It
shows a correlation coefficient of 0.85. We also performed
Bland-Altman analysis to compare the nCD64 expression
values obtained from the biosensor and control; it shows an
average difference of zero between the two methods but a high
value of 0.52 as limits of agreement (shown in Fig. 1c).*°

Rate of cell capture over experiment duration

Here, we investigated the rate at which cells become captured
in the capture chamber and its correlation with the CD64 ex-
pression values. To investigate this, we monitored the number
of cells at the entrance and exit counters over the entire experi-
ment duration. The number of leukocytes counted at the en-
trance and exit counters over time is shown in Fig. 1d. The cell
count spike in the plots represents the release of cells bound to
the walls of the microfluidic biosensor during the course of ex-
periment. First, we investigated the capture using a BSA blocked
chamber (Fig. 1d), which shows a minimal cell capture of less
than 5%. The corresponding plots from individual granulocytes
+ monocytes and lymphocyte populations are shown in Fig. S2a
and b, respectively. We used the BSA blocked chamber for the
initial optimization of the BSA concentrations in the chamber
to prevent any non-specific cell adsorption. Similarly, using an
anti-CD64 antibody adsorbed chamber, the plot of leukocytes
counted at the entrance and exit electrical counters over time is
shown in Fig. 1e. It shows much higher capture owing to the
specific CD64 expression level-based capture. The corresponding
plots from individual granulocyte + monocyte and lymphocyte
populations are shown in Fig. S3a and b;,j respectively.

Machine learning (hierarchical clustering) on biosensor's
data (heat maps)

We used hierarchical clustering®® machine learning tech-
niques to investigate the effect of the rate of CD64 expression
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levels on the rate of cell capture in the chamber. The normal-
ized ratio of exit to entrance granulocyte + monocyte counts
versus experiment time is shown in Fig. 2a for all 106 whole
blood experiments. Each experiment shows a unique progres-
sion and the slope of the normalized ratio at different points
in time. We selected a time window of 15-20 min and divided
that interval into 30 s sub-intervals. Fig. S41 shows the corre-
lation plots between slope values vs. cell counts (R> = 0.034)
and slope values vs. cell capture percentage (R> = 0.4). To ob-
serve the underlying pattern between all the biosensor data
features, the slope values, nCD64 and total granulocyte +
monocyte counts are used as input data to the unsupervised
hierarchical clustering methods. The detailed programs are
described in the Materials and methods section. The corre-
sponding heat map is shown in Fig. 2b. The heat map shows
the underlying pattern between features, and it is interesting
to find that the slope values across different time points
share consistent patterns, while they are jointly inversely re-
lated to nCD64 expression values and cell counts. Similarly,
when the pairwise distance is calculated with a ‘correlation’
method for hierarchical clustering of the input data, the
resulting heat map is shown in Fig. S5.f This further vali-
dates the pattern between features, in particular, the inverse
relationship of the slope values to the CD64 expression
values. Therefore, the slope values can be used as promising
predictors in more accurate determination of nCD64 expres-
sion levels from the biosensor's data.

Clustering on biosensor's data using artificial neural
networks (self-organizing maps)

In order to further validate the inverse relationship of slope
values to nCD64 expression values, we used the self-
organizing map (SOM) clustering technique which is an
unsupervised version of the artificial neural network (ANN).*?
A single layer model with 100 neurons is used as shown in
Fig. S6.f The input features to the model are slope values,
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nCD64 values and granulocyte + monocyte counts. The net-
work was trained using a batch SOM algorithm. Fig. S77
shows the SOM clustering analysis of the input feature set
from the 106 whole blood nCD64 cell capture experiments.
The plot of SOM neighbor weight distances shows neurons as
gray-blue patches. The neighboring hexagons are colored
black-yellow, which represents the closeness of each neu-
ron's weight vector to its corresponding neighbors. Fig. S7t
also shows the SOM layer showing sample hits. Each neuron
represented by a hexagon shows numbers which represent
the number of inputs it classifies. The colored patch size rep-
resents the number of vectors for each neuron. SOM input
weight planes are shown in Fig. S8.1 Each plot represents the
specific input to the neuron layers. Zero connections are rep-
resented as black, and strong positive connections are repre-
sented as red. Input 1 is nCD64 values with low black connec-
tions showing their dependency on the slope values.

Multivariate regression on biosensor's data

We performed standard multivariate regression using Matlab
on the biosensor's input feature data to predict nCD64 ex-
pression values for each blood sample. We used nCD64
values as a response variable and cell counts, percentage of
captured cells and slope values as predictor variables in the
function. The correlation plot between the biosensor and
control nCD64 values is shown in Fig. 3a, which shows a cor-
relation coefficient of R* = 0.77 and a recovery of 95%. The
corresponding Bland-Altman analysis of the data is shown in
Fig. 3b, which shows an average difference of -0.0003 and
limits of agreement to be (-0.5403, 0.5395). The regular mul-
tivariate linear regression to predict nCD64 values from bio-
sensor's input features didn't show any improvement and
resulted in lower correlation coefficients. However, the multi-
variate linear regression may suffer from several drawbacks,
such as highly correlated variables and a nonlinear relation-
ship between the predictor and the response. Hence, we used
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Fig. 2 (a) Normalized ratio of exit to entrance granulocyte + monocyte counts vs. experiment time showing different slope values. (b) Heat maps
showing the underlying pattern between features, in particular the inverse relationship of the slope values across different time points to nCD64
expression levels and granulocyte + monocyte counts. The heat map is obtained through hierarchical clustering with Euclidean distance using
features from 106 blood sample experiments. The x-axis represents each individual experiment corresponding to a unique blood sample.
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Standard multiple linear regression showing R? = 0.90, (b) Bland-Altman analysis of data in a, (c) multivariate regression using the Levenberg
Marquardt ANN training method with R? = 0.90, (d) Bland-Altman analysis of data in c, (e) multivariate regression using the Bayesian regularization
ANN training method with R? = 0.91, (f) Bland-Altman analysis of data in e, (g) multivariate regression using the scaled conjugate ANN training
method with R? = 0.88, (h) Bland-Altman analysis of data in g. The control nCD64 values (from the flow cytometer) shown in Fig. 3 are obtained
from ref. 30.

This journal is © The Royal Society of Chemistry 2018 Lab Chip


http://dx.doi.org/10.1039/c8lc00108a

Published on 16 March 2018. Downloaded by University of Illinois - Urbana on 13/04/2018 18:05:19.

Paper

instead an artificial neural network to achieve higher
predictability.

Multivariate regression on biosensor's data using artificial
neural networks

Next, we used artificial neural networks,** performed multi-
variate regression on the biosensor's input feature data (slope
values, percentage of captured granulocytes + monocytes and
corresponding cell counts) and determined the biosensor's
nCD64 expression values for each blood sample. We used a
two-layer feed-forward artificial neural network with 10 neu-
rons for hidden layers and 1 neuron for output layers, respec-
tively, as shown in Fig. S9.f We trained the model with differ-
ent methods in Matlab including Levenberg Marquardt,
Bayesian regularization, and scaled conjugate. The resulting
comparison plots between flow cytometry (control) nCD64
values and biosensor's nCD64 values for all the training
methods are shown in Fig. 3. First, when the model is trained
with the Levenberg Marquardt method, the corresponding
Hinton diagram representing the weight and bias values of
all neurons in hidden and output layers is shown in Fig.
S$10.f Furthermore, the output regression plots of training,
validation and testing data sets are shown in Fig. S11.}f The
error histogram and mean squared error (0.0445) plots are
shown in Fig. S12a and b,} respectively. The correlation plot
between the biosensor and control nCD64 values using the
Levenberg Marquardt method is shown in Fig. 3¢, which
shows a correlation coefficient of R” = 0.90 and a recovery of
96%. The corresponding Bland-Altman analysis of the data is
shown in Fig. 3d, which shows an average difference of
-0.0116 and limits of agreement to be (-0.3793, 0.3561). Sec-
ond, when the model is trained with the Bayesian regulariza-
tion method, the corresponding Hinton diagram representing
weight and bias values of all neurons in the network is shown
in Fig. S13. The output regression plots of data sets are
shown in Fig. S141 and the corresponding error histogram
and mean squared error (0.0369) plots are shown in Fig. S15a
and b,t respectively. Similarly, the correlation plot between
the biosensor and control nCD64 values using the Bayesian
regularization training method is shown in Fig. 3e, which
shows a correlation coefficient of R* = 0.91 and a recovery of
99%. The corresponding Bland-Altman analysis of the data
(Fig. 3e) is shown in Fig. 3f, which gives an average difference
of -0.0127 and limits of agreement to be (-0.3499, 0.3753).
Third, when the model is trained with the scaled conjugate
method, the corresponding Hinton diagram is shown in Fig.
S16.7 The output regression plots of data sets are shown in
Fig. S171 and the corresponding error histogram and mean
squared error (0.0669) plots are shown in Fig. S18a and b}
respectively. Finally, the correlation plot between the biosen-
sor and control nCD64 values using the scaled conjugate
training method is shown in Fig. 3g, which shows a correla-
tion coefficient of R> = 0.88 and a recovery of 96%. The corre-
sponding Bland-Altman analysis of the data (Fig. 3g) is
shown in Fig. 3h, which gives an average difference of
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-0.0021 and limits of agreement to be (-0.4039, 0.3976). Fur-
thermore, Tables S1-S37 list all the weight and bias values of
all the neurons in the input and output layers of the network
when trained with Levenberg Marquardt, Bayesian regulariza-
tion, and scaled conjugate training methods, respectively.

Comparison between computational methods

We also calculated the accuracy to determine nCD64 expres-
sion values from the biosensor as compared to control values
for all the computational methods used. Fig. 4 shows the ac-
curacy plot to predict nCD64 bins (equally divided over the
entire range) using the univariate regression, multivariate lin-
ear regression and ANN training methods. Univariate regres-
sion accuracy results are obtained from earlier analysis. In or-
der to predict the nCD64 bins with accuracy greater than
85%, the minimum size of an nCD64 bin is found to be 1.2
for univariate regression. For multivariate linear regression,
the minimum size of the nCD64 bin is found to be 1.33,
which is higher compared to that for univariate regression,
thus showing no improvement. However artificial neural net-
work training methods worked better and showed much bet-
ter performance. The minimum bin size with prediction ac-
curacy greater than 85% is found to be 0.632 for both
Levenberg Marquardt and Bayesian regularization methods
and 0.706 for the scaled conjugate method. This shows that
ANN methods perform better than univariate regression
based on the calculated nCD64 values.

Furthermore, Table 1 shows a more detailed comparative
analysis between univariate regression, multivariate regres-
sion, and different artificial neural network training methods
including Levenberg Marquardt, Bayesian regularization and
scaled conjugate. In terms of highest accuracy (89.5%),
coefficient of determination (R* = 0.91), lowest mean squared
error (0.0369), and Bland-Altman's lower limits of agreement
(-0.3499, 0.3753), Bayesian regularization not only performed
better than wunivariate and standard multivariate linear

—o—Levenberg-Marquardt
-=—Bayesian Regularization
—a—Scaled Conjugate

=>~Univariate Regression

Prediction accuracy (%)
~
wv

=«=Multiple Regression

0 0.5 1 1.5 2 2.5 3
nCD64 bin size

Fig. 4 Accuracy to predict nCD64 bins using univariate regression,
multivariate linear regression and multivariate ANN different training
methods. ANN methods perform better than univariate and standard
multivariate linear regression methods based on the calculated nCD64
values. Univariate regression accuracy results are obtained from earlier
analysis.>®
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Table 1 Comparison between different computational methods including univariate regression, standard multivariate regression and multivariate ANN
training methods (Levenberg Marquardt, Bayesian regularization and scaled conjugate methods). Bayesian regularization method performs best with the
lowest mean squared error, the highest R? value, nCD64 recovery, and prediction accuracy

Mean

Computational nCD64

Rvalue | squared R? value

method recovery

Bland- Bland— Bland-
Altman Altman Altman
(mean error) (pos. bias) (neg. bias)

nCD64 bin size

Overall
(accuracy 2

accuracy

- Overall accuracy: average accuracy of all nCD64 bin sizes

regression but also outperformed other ANN multivariate
Levenberg Marquardt, and scaled conjugate training methods.

Discussion and conclusions

Here, we show an increase in the R* value (0.85 to 0.91) and
accuracy (78.9% to 89.5%) to quantify CD64 values from the
biosensor using ANNs for multi-feature regression as com-
pared to single feature regression analysis. Similarly, the use
of ANN methods for multivariate regression (R> = 0.91) has
shown much better performance than the standard multivari-
ate linear regression (R® = 0.77). Furthermore, for univariate
and multivariate linear regression, the CD64 bin prediction
accuracy starts to drop as the nCD64 bin size decreases from
1.5; however, the accuracy remains greater than 90% for the
ANN methods used for CD64 calculation. In prospective clini-
cal adjudication based on patients’ CD64 levels, CD64 bins
can be assigned to different patient categories depending on
their state of sepsis progression.* Thus, the ability to accu-
rately predict more bins of smaller size will help in develop-
ing more accurate diagnostic and prognostic disease models.

The selection of the ANN multivariate regression training
method depends on time and space complexity i.e. the pro-
cessing time and computing memory the data training re-
quires. Considering these two parameters, the Levenberg
Marquardt method takes the least time and the scaled conju-
gate gradient the least memory to train the input data for re-
gression. Meanwhile, Bayesian regularization requires more
time and memory than the other two methods. However, bio-
sensors relatively produce smaller data sets as compared to
other genomics, proteomics and other high bandwidth data
sets e.g. climate and astronomical data sets. Therefore, multi-
variate regression using training algorithms requiring more
memory and time, like Bayesian regularization, can easily be
implemented in a reasonable time on the biosensor's data
owing to its smaller datasets. Bayesian regularization also
performed best in terms of highest accuracy (89.5%) and co-

This journal is © The Royal Society of Chemistry 2018

efficient of determination (R* = 0.91), lowest mean squared
error (0.0369), and Bland-Altman's lower limits of agreement
(-0.3499, 0.3753) as shown in Table 1.

The accuracy and coefficient of determination can be fur-
ther improved by reducing the non-specific capture of cells in
the chamber which is currently 2% of the total leukocytes
and 8% of granulocytes + monocytes. Lowering the flow rate
can decrease the normalized experimental slopes (shown in
Fig. 2) as the experiment takes more time to complete.
Changing the flow rate should be accompanied by the change
of the geometry of the erythrocyte lysing module to keep the
lysing and quenching times the same. Furthermore, flow rate
changes can result in different shear stresses in the capture
chamber for the immunoaffinity capture, and the chamber
geometry also needs to be changed to keep similar shear con-
ditions for cellular capture in the chamber.

The underlying inverse pattern of slope values to the CD64
expression levels in Fig. 2b shows some ‘singularities’ in the
heat map when the linear inverse relationship does not ap-
ply. There are two possibilities for those ‘singularities’ or out-
liers. First, it could be a random error in our features or their
measurements using the biosensor, which could potentially
come from experimental variability. Second, we had a very
generalized patient inclusion criterion, i.e. SIRS positive or/
and suspicion of an infection.>® Our patient population had
many confounding factors including acute and chronic co-
morbidities and other systemic inflammatory diseases that
may influence the level of nCD64 expression and other fea-
tures including cell counts.*”

Although our biosensor is designed for determining
nCD64 expression levels, it can easily be adapted to quantify
any other cell surface receptor expression levels specific to
sepsis. For example, reduced HLA-DR expression on mono-
cytes and increased CD11b expression on neutrophils are also
known to be specific biomarkers of pro-inflammatory and
anti-inflammatory responses of the immune system in septic
patients.>>® The corresponding changes in the biosensor
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are required to immobilize their respective antibodies in the
capture chamber. Similarly, ANN-based multivariate regres-
sion can also be applied to such biomarker determination
considering the same parameters of normalized rates of cap-
ture and percentage of captured cells.

Furthermore, our biosensor can also be adapted to cap-
ture CYP1A1 and CYP1B1 in endothelial cells and our compu-
tational analysis can be used to quantify their expression
levels to explore their pro/anti-atherogenic roles.>® CD71 ex-
pression changes in circulating tumor cells (CTCs) based on
growth regulation and proliferation can also be quantified by
their expression-based capture;*® however, owing to the very
low concentration of CTCs in whole blood, the cellular cap-
ture and differential counts also depend on non-specific cel-
lular adhesion to the chamber which should be incorporated
into the model.

In our whole blood experiments, we have many quality
control processes, to keep the variability minimum to collect
the best datasets. The capture chambers and lysing modules
were discarded after each experiment. Capture chambers are
also observed under a microscope to check for any pillars col-
lapsing and damaged areas before use in an experiment.
Each electrical counter is also tested before use in the experi-
ments. The resistance of the metal lines on PCB and
electrodes is measured and the counter is only used if the re-
sistance is less than 5 ohms.

In conclusion, we have shown the improved accuracy for
CD64 expression level quantification by employing multivari-
ate regression using artificial neural networks as compared
to commonly used univariate regression. We developed an
ANN model and trained the biosensor's input data to quan-
tify CD64 expression by using multivariate training methods
including Levenberg Marquardt, Bayesian regularization, and
scaled conjugate. ANN multivariate regression has shown im-
proved accuracy, correlation coefficients and mean squared
error in determining CD64 values in comparison to univari-
ate regression. We conducted this computational analysis on
106 whole blood experiments performed on blood samples
collected from SIRS positive or infection suspected patients
at Carle Foundation Hospital, Urbana. This approach finds
many applications in biosensor data analytics by utilizing
multiple features of the biosensor's data for output
determination.

Materials and methods
Statistical analysis

Univariate regression: univariate regression is conducted con-
sidering the percentage of captured cells (as a single variable)
to determine nCD64 expression values. Data on the scatter
plot between variables are fitted for regression using Micro-
soft Excel. Rotation estimation (cross validation): the cross
validation technique is used to determine biosensors' nCD64
values from the percentage of captured cells. We employed
3-fold validation by dividing the entire data into 3 sets and
performing regression on 2 sets and validating on the third
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set (blinded). We used 1000 rotations to reduce error, ran-
domly selected the samples and performed cross-validation.
The results are averaged for all the rotations. Bland-Altman
(BA) analysis: BA analysis compares the two methods (biosen-
sor and flow cytometer) to quantify nCD64 values. It shows
the difference (biosensor nCD64-control nCD64) of values vs.
average of both methods. The bias value is the average of the
difference (represents error) and the limits of agreement are
calculated using +1.96 x SD of the difference. Box plot: we
used the boxplot(x,g) Matlab command to plot the box plot,
where g is the time window groupings and x is the respective
nCD64 values. Outliers are represented as red colored
crosses. Standard multiple regression: standard multi-feature
regression is performed using the Matlab function regress(y,
X). This function outputs a vector of coefficient estimates for
multivariate regression of the responses (nCD64) in y on the
predictors in X (slope values, cell counts, and percentage of
cell capture).

Hierarchical clustering (clustergram)

We performed the unsupervised hierarchical clustering analy-
sis on the biosensor data (cell counts, nCD64 expression
values and slope values at different experiment times) using
Matlab's clustergram(Data) function. The function displays
the heat map and the dendrogram. Furthermore, input data
are normalized by log-mean normalization. The pairwise dis-
tance between pairs of objects is calculated by two different
methods, ‘Euclidean’ and ‘correlation’. RowPdist and
ColumnPdist input variables to the clustergram function are
used to input these pairwise distance methods.

Artificial neural networks (self-organizing maps)

We also clustered the data using self-organizing maps
(SOMs). SOMs classify the input variables according to their
grouping in the input space. Neighboring neurons in the
SOM recognize neighboring sections of the input space and
learn the distribution and topology for subsequent clustering
of input variables. We used artificial neural networks (ANNs)
in Matlab to cluster the biosensor's input data using the
SOM. The corresponding network diagram of a single layer
artificial neural network representing a self-organizing map
with 100 neurons is shown in Fig. S6;F The network was
trained using the batch SOM algorithm. The SOM neighbor
weight distances show neurons as gray-blue patches and the
neighbor relationship is shown with red lines. The neighbor-
ing hexagons are colored black-yellow, which represents the
closeness of each neuron's weight vector to its corresponding
neighbors. SOM sample hits: each neuron is represented by a
hexagon and shows numbers which represent the number of
inputs it classifies. SOM weight positions represent the input
space that is classified by dots representing neuron weight
vectors and the corresponding neighboring neurons are
connected with red lines. SOM input weight planes represent
the interconnectivity of different neurons. Zero connections
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are represented as black, and strong positive connections are
represented as red.

Artificial neural networks (multivariate regression)

Multivariate regression on the biosensor's data is performed
using artificial neural networks in Matlab. The network dia-
gram of a double layer forward feed artificial neural network
with softmax output and sigmoid hidden neurons is shown
in Fig. S9.f It consists of 10 neurons (hidden layer) and 1
neuron (output layer). The input space to the ANN model was
normalized by the log-mean normalization method. Input
variables including the slope values, cell counts and percent-
age of captured cells and the output target values for predic-
tion are the corresponding nCD64 expression values for each
sample. The network was trained using three different train-
ing methods.*" (1) Levenberg Marquardt: this training
method takes more memory but less time to train. Training
stops when there is no improvement in generalization, which
is also indicated by the increase in the mean squared error of
samples.”* (2) Bayesian regularization: this training method
normally takes more time (as also indicated by epochs in
Table 1) but results in better prediction accuracy and is used
for more noisy datasets. This method stops training
according to a regularization protocol ie. adaptive weight
minimization. (3) Scaled conjugate gradient: this method
takes the least memory compared to other methods. Training
stops when there is no improvement in generalization, which
is also indicated by the increase in the mean squared error of
samples.

Blood sample acquisition

Blood samples were obtained from patients who are SIRS+
and/or whose blood culture test is ordered by a doctor. The
left-over samples were de-identified by hospital staff and sent
to us. The blood sample collection process is approved
through authorized University of Illinois Urbana-Champaign
and Carle Foundation Hospital Institutional Review Board
(IRB) applications (UIUC IRB number 15500 and Carle IRB
number 15014).%°
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