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Abstract: Low cost, portable sensors can transform health care by bringing easily available diagnostic
devices to low and middle income population, particularly in developing countries. Sample
preparation, analyte handling and labeling are primary cost concerns for traditional lab-based
diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise
to integrate and automate these complex and expensive laboratory procedures onto a single chip;
the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms.
Here, we review some recent developments of label-free, droplet-based biosensors, compatible with
“open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of
the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key
challenges that must be addressed to make these sensors commercially viable and summarize a
number of promising research directions.
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1. Introduction

Management of many life-threatening diseases, such as cancer, tuberculosis, AIDS, malaria,
and others, requires rapid, easy to use, integrated, and cheap diagnostic devices for detection of
biomolecules [1,2]. The recent technological advances in microfluidics and nanotechnology present
new opportunities for development of lab-on-a-chip (LoC) systems to perform a complete set of
biomedical assays to achieve cost-effective, high-throughput, sensitive, point-of-care diagnostics.

Over the past two decades, there have been numerous reports of microfluidic systems integrated
onto a LoC platform [3–6]. Among them, digital microfluidics (DMF) offers a comprehensive set of
fluidic operations, such as dispersing, transport, mixing, merging and splitting by programmable
activation of a series of actuation electrodes [6–8], as shown in Figure 1a. DMF retains the advantages
of traditional, continuous-flow microfluidic systems, namely, small sample volume, reduced reagent
consumption and waste production, rapid analysis, and portability. Moreover, compared to other
techniques, DMF systems operate at lower power, and are amenable to parallel processing and data
acquisition for high throughput screening [8–15]. Being highly reconfigurable, DMF-based systems
also satisfy the needs of various biochemical applications, e.g., chemical and enzymatic reactions,
immunoassays, proteomics, DNA detection, single-cell studies, and so on [7,12,13,16–21].
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Figure 1. A droplet-based LoC platform must be integrated with highly sensitive and selective sensors.
(a) General configuration of digital microfluidics platforms. Digital microfluidics offers a broad range
of droplet operations (e.g., generation, transport, mixing, sensing, etc.). This review focusses on
droplet-based sensors and their performance limits. (b) In a closed microfluidic system, sensors analyze
the droplets as they flow past the sensors; (c) In an open microfluidic system, the droplet is placed
on the sensor surface, and no continuous flow is required. Figure 1(c1–c4) show various aspects of
droplet-based sensors covered in this article.

The goal of any LoC technology, eventually, is to achieve fast and highly sensitive detection
of a specific analyte with the smallest possible sample/reagent volume at comparatively low cost.
However, these otherwise sophisticated LoC technologies often rely on relatively simple sensors, e.g.,
colorimetric, rudimentary flow cytometry, UV-Vis absorbance spectroscopy, etc. [22–24]. In several
applications, the technology, as is, has had enormous impact; for others, more sensitive sensors, that
are also compatible with the architecture and topology of droplet microfluidics, are desired [5,25].
For example, real-time, rapid detection of sub-femtomolar concentration of biomolecules is critical in
various areas, such as, biomedical diagnostics/therapeutics, food safety, environmental monitoring,
and homeland security. The traditional sensors that achieve such high degree of sensitivity are
usually too large for integration with microfluidic systems, moreover, the process technologies are
often incompatible. Therefore, the recent development of droplet-based biosensors compatible with
the architecture of a DMF platform has attracted considerable attention in biomedical research and
applications, especially in drug screening, biomarker analysis, and on-chip chemical synthesis [5,8].

There are two types of droplet-based sensing platforms. For closed-microfluidic systems
(Figure 1b), the sensors straddle the channel, collecting data as droplets flow past the sensor. Such
systems are well developed and offer high throughput and simple integration. In contrast, open
microfluidics shown in Figure 1c involves planar (often, multifunctional) sensors where analytes
within the droplets are interrogated. Typically, an open microfluidic system is simpler and cheaper
to fabricate, easier to reconfigure, and offers faster sample handling and direct access to droplets for
analyte extraction, if necessary [6].

Given the novelty of the open-microfluidic droplet-based biosensors, it is important to assess their
performance in terms of the three fundamental metrics of biosensors: response time, sensitivity, and
selectivity [26]. In this review, our goal is to summarize the efforts of various groups to improve these
metrics (shown graphically in Figure 1(c1–c4)) and address the challenges of droplet-based sensors.
For other components of the microfluidic systems (e.g., manipulation and washing/purification
which are schematically shown in Figure 1a), we refer the readers to several excellent reviews on the
topic [8,27–29]. Finally, label-free sensors are desired for all bio-assays, so that the analyte molecule
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need not be first be attached to a “label-molecule” for subsequent detection. Label-free approaches
reduce time and cost of sample preparation significantly. In this review, therefore, we focus on
label-free, droplet-based biosensors.

1.1. Response Time of Biosensors

Response time (ts) is defined as the minimum time needed for a biosensor to capture sufficient
amount of biomolecules to identify an analyte. Regardless of the detection mechanism, ts is
limited by the physical diffusion of molecules towards the sensor surface [3,5,18]. In practice, ts

can be extraordinarily long at low analyte concentrations (ρ): Even the most sensitive nanowire
(NW)-biosensor would need more than a day to positively identify an analyte at 1 fM concentration [30].

Fortunately, there are several ways to reduce the response time. Recall that the response time
reduces for higher analyte concentration, ρ fi N{V, where N is the number of analyte molecules and
V is the sample volume. In one approach, ρ is increased by increasing N, through Polymerase Chain
Reaction (PCR) or Circular Strand-Replacement Polymerization (CSRP) [31–33]. The N-amplification
approach is adopted by several commercial assays, e.g., Ion Torrent (Thermo Fisher Scientific, Waltham,
MA, USA) [31]. These approaches are very sensitive and selective, but are expensive, need long
preprocessing time, and require trained personnel and complex instrumentation which is likely to
limit their applicability in fast, point-of-care (PoC) diagnosis [34]. The second approach is to increase ρ

is by reducing V, e.g., as in biobarcode assay [35] and droplet evaporation on open DMF [9,11]. We
will see in Section 2 that droplet evaporation offers a simple, yet efficient way to significantly reduce ts

and improve sensitivity, even for ultra-low analyte concentrations (see Figure 1(c1)).

1.2. Screening-Limited Sensitivity of Biosensors

Potentiometric biosensors, which detect the analyte charge directly, allow label-free detection and
are easily miniaturized [36–40]. Since the target molecules conjugate with the probe molecules (usually
immobilized on the sensor surface as shown in Figure 1(c4), left) only in salt-based electrolyte solutions,
screening by these ions fundamentally limits the sensitivity of charge-based (potentiometric) biosensors.
The length-scale over which the charges are screened is given by the Debye length, λD “

a

εkBT{2i0q2,
where ε is the dielectric permittivity, kB the Boltzmann constant, T the temperature, q the fundamental
electronic charge, and i0 the ionic strength of the electrolyte. Ionic strength of physiological fluids,
such as blood and plasma, is in the range of135 mM´ 140 mM, for which λD ă 1 nm. Since a sensor
cannot effectively “see” the biomolecules located at a few Debye lengths away, its sensitivity to those
biomolecules is dramatically reduced [41].

Various approaches have been adopted to mitigate this fundamental screening-limited sensitivity
of potentiometric sensors. Commonly used techniques include detection in low-ionic strength
electrolytes, either by performing binding-sensing steps at low ionic strength [42] or using a
flow-through apparatus that performs the binding and the sensing steps at different ionic strengths [43].
Both the approaches, however, reduce the binding affinity of the target molecule to the immobilized
probe, which may degrade selectivity (the ability of a sensor to differentiate between target vs. parasitic
molecules). Other approaches include detection of biomolecular dipoles by using high-frequency
measurements [44] or engineering antibody capture fragments to bind the analytes close to the sensor
surface [45]. Unfortunately, at present, these techniques are neither cost-effective, nor easily integrated
into a droplet-based platform.

As we will see in Section 3, droplets offer a fundamentally different approach to desalting: Due to
finite number of ions in a sub-nL droplet, it is possible to temporarily desalt the droplet electrically
near the sensor region (graphically shown in Figure 1(c2)) to maximize the sensitivity. Swaminathan et
al. demonstrated a method for localized electronic desalting on a field effect transistor (FET) biosensor by
using on-chip polarizable electrodes to locally deplete salt ions near the sensor region [46]. Theoretical
analysis by Dak et al. shows that such approach could lead to a 250X improvement of the detection
limit [47].
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1.3. The Importance of “Selectivity” for Integrated Biosensors

The ability to differentiate between the analyte vs. parasitic molecules resembles the challenge
of finding a needle in a haystack. Many groups have reported highly sensitive sensor technologies,
only to find that the sensor responds exquisitely to all molecules, thereby rendering the technology
irrelevant and useless.

Traditionally, there are three general techniques to improve selectivity. First, and perhaps the
most popular method, is the use of amperometric sensors to detect analytes. These sensors monitor
the current associated with oxidation or reduction of electroactive species involved in the recognition
process. Since the electroactive species is specific to the target biomolecule, amperometric sensors
have a very high specificity. The second approach relies on the sample purification to capture the
analytes of interest and release them in the sensing solution. For example, Stern et al. developed a
micropurification chip that captures the cancer biomarkers (antigens) from blood and, after washing,
releases the antigens into a pure buffer solution to be detected by a silicon nanoribbon sensor [48].
Similarly, Krisvitsky et al. used antibody-modified silicon nanowires (SNWs) to capture the target
proteins, followed by subsequent release and detection using SNW-based FET arrays [49]. Finally,
the third approach focuses on reducing non-specific binding by covering the gaps among receptors
by small molecules, see Reference [50] for a quantitative analysis. In Section 4, we will discuss two
new strategies discussed in the literature to assess the selectivity in droplet-based sensors: Localized
heating (schematically shown in Figure 1(c3)) and monitoring differential binding dynamics without
probe immobilization (shown in Figure 1(c4), right).

With this background on response time, sensitivity, and selectivity of classical sensors, we will
now discuss in the next three sections, how the droplet-based sensors address these issues and discuss
the remaining challenges before the sensors are integrated onto a droplet microfluidic platform.

2. Droplet-Based Beating of diffusion Limit in Electrical Biosensors

As mentioned in Section 1, droplet-based biosensors offer new approach (an alternative to
number-amplification methods, such as PCR) to improve the response time by an effective increase of
analyte concentration through volume reduction. As an emerging field, several research groups have
used droplet evaporation to speed up biomolecules’ physical diffusion. For example, De Angelis et
al. showed that evaporation of a microliter-sized droplet on a specially designed superhydrophobic
surface (created by combination of photolithography and electron-beam lithography) locally delivers a
few copies of λ–DNA to an integrated Surface-Enhanced Raman Scattering (SERS) sensor [9].

Similarly, there is another new class of electrical sensors that can be integrated with “open”
digital microfluidics. Focusing on electrical biosensing, the authors in Reference [11] showed that
time-multiplexed, droplet-based non-Faradic impedance sensing (DNFIS) succeeds in detection of
attomolar-level concentration of DNA molecules [51,52]. In contrast to Faradaic EIS, no additional
reagent or reference electrode are required, rendering non-Faradaic schemes somewhat more amenable
to PoC applications [53–58]. The authors showed that by relying on the entire time-dependent
impedance reading and intentional pinning of the droplet, the results are statistically robust, with
very little uncertainly in the concentration [11]. Given its novelty, we discuss the approach in some
detail below.

(a). Surface engineering to combine the “lotus effect” and the “coffee ring effect”:

The sensor relies on the ability to concentrate the biomolecules through controlled evaporation
of droplets. To achieve well-defined evaporation profile, many research groups have attempted to
mimic the “lotus effect” [59], by artificially creating hydrophobic surfaces with symmetric patterns, see
Figure 2a (left). Unfortunately, the droplet moves around easily on such surface (as on a lotus leaf) and
pinning the droplet to a location is difficult [9]. Additionally, most of the reported (super)hydrophobic
surfaces are made of/coated with materials that are not electrically conductive [60–62]. Therefore,
an electrically-conductive, hydrophobic surface which mimics a “coffee ring” (pinned edges) is
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required [26]. To achieve this, the authors designed asymmetric rough electrodes (that pins the
droplets perpendicular to the array, but allows it to elongate parallel to it) as shown in Figure 2a (right).
The fabrication process proceeds as follows. Briefly, following the deposition of the electroplating
seed layer (Ni/Ti) and formation of the mold layer by standard photolithography, Ni electroplating
at specific current density created the sensing array shown in Figure 2b. The hierarchical nanoscale
features of the surface morphology, formed as a result of metal electroplating, are essential for pinning
of the droplet so that impedance measurements are always reproducible [11]. Figure 2c,d show a
droplet 4 min and 14 min after deposition, respectively, with the contact line pinned.

(b). Evaporation improves sensitivity:

Evaporation of an analyte-containing droplet (such as DNA or bacteria) changes the ionic
concentration of the droplet [63,64]. As a result, the droplet conductance increases with time (Figure 2e).
By continuously monitoring the impedance, one obtains several data points in a single measurement,
the average of which shows very little variation [11,64–66]. A detection limit (DL) of 60 aM (with a
response time of 18 min) was reported which is a 4–5 orders of magnitude improvement compared to
bulk-based, classical non-Faradaic methods. Theory and modeling of the droplet-based non-Faradaic
impedance sensing have been extensively discussed in Reference [66].
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Figure 2. (a) Left: On a symmetric surface, a droplet forms a semispherical cap-shaped structure with
a circular contact line. Right: It forms an oval-shaped contact line on an asymmetric surface, such
as the structure in Reference [11]. The inset shows computer graphic of a lotus leaf surface; (b) SEM
image of the electroplated electrodes. The figure on the right shows an AFM profile of the electrodes’
nanotextured surface; (c) An optical image of a droplet on the electrode array 4 min after deposition;
(d) The same droplet 10 min later; (e) The relative conductance change as a function of the initial
DNA concentration. Figures are reproduced from Reference [67] by permission of the Royal Society of
Chemistry. Inset of Figure 2a is reprinted with permission from @ William Thielicke.

Although, evaporation improves sensitivity dramatically and the sensitivity is maximized in
solutions with low conductivity (to increase the impedance contrast), some biomolecules (e.g., proteins,
double stranded DNA, red blood cells, etc.) are very sensitive to the changes of conductivity and retain
their properties only in specific ionic conditions. Fortunately, the theory predicts and the experiments
confirm that non-Faradic EIS shows excellent sensitivity even at high salt concentration at suitably high
measurement frequency. Another approach involves time-dependent modulation of salt concentration
to be discussed in the following section.
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3. Droplets to Overcome Screening Limit

We explained in Section 1 that charge screening by salt ions limits the potential of charge-based
sensors. The finiteness of droplets in a droplet-based sensor suggests new opportunities to combat
screening. Specifically, due to finite number of ions in a droplet, it is possible to temporarily desalt the
droplet electrically near the sensor region to transduce larger fraction of biomolecule charge to the
sensor. Theoretical work in Reference [47] shows that „50 pL droplets can be appreciably desalted for
physiological concentrations using high-surface area electrodes. Droplet desalting for such a system,
has been experimentally demonstrated in Reference [46] for concentrations ď 10 mM.

Figure 3a shows the approach used by the authors to desalt sub-nL droplets placed on a set
of polarizable coplanar electrodes surrounding the sensing unit. The electrodes were fabricated by
conventional evaporation and lift-off patterning of 1000 Å thick Ti/Pt films. A DC bias (less than the
over-potential) is applied across the electrodes to adsorb the excess ions within the electrical double
layer (EDL). A transistor at the center of the droplet can be used for chemical/biomolecule sensing.
Due to small volume of the sample, the droplet is desalted without undesirable parasitic effects, such
as redox reactions, gas bubbling, and/or heating. Figure 3b shows the numerical simulation of the
negative ion density profile within a 300 pL droplet for 1 µ M initial concentration at an applied bias
of 1 V. The ions pile up near the electrodes and, consequently, deplete the droplet bulk to less than 1%
of the original ionic concentrations.
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Figure 3. (a) Schematic of a FET/nanowire biosensor with on-chip electrodes for localized desalting and
simultaneous device biasing. Positive

`

A`
˘

and negative
`

B´
˘

ions are attracted towards negative and
positive polarity electrodes, respectively, depleting the droplet bulk of salt; (b) Numerical calculation
of ion profile showing negative ion density in a 300 pL droplet (6100 µm2 electrode area) at 1 µM
(background strength under 1 V desalting bias); (c) Ratio of the droplet- volume to the electrode-area
required for desalting the droplet by 50%, as a function of desalting voltage and ionic concentration.
For example, desalting at 100 mM concentration under 1 V desalting bias requires an aspect ratio of
~1 µm. Reproduced with permission from Appl. Phys. Lett. 106, 053105 (2015). Copyright 2015, AIP
Publishing LLC.

The authors generalized the analysis by Kilic et al. [68] to droplet-based systems in order to
determine the extent of desalting in a droplet. The desalting efficiency is related to the droplet
volume (V), ionic strength pio), the bias across the desalting electrodes (Ve), and the electrode surface
area (A). Figure 3c shows the ratio of droplet volume to electrode area (V{A) that is required for
desalting droplets of various salt concentrations to a fraction of f = 0.5; clearly, V{A ratio varies
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considerably with the ionic concentration to be desalted. To desalt more feasible and addressable
droplets (ě 100 pL) at concentrations up to 10 mM, the authors used nanostructured Pt-black to
increase A. Briefly, electrodeposition of the Pt-black electrode was done on a seed layer of 1000 Å thick
Ti/Pt from dihydrogen hexachloroplatinate at a specific current density to obtain highly branched
dendritic nanostructures. They reported 50% desalting for droplets with salt concentration of 10.8 mM.
Theoretical calculations in Reference [47] show that with 100X enhancement of electrode area, the
detection limit can be improved by almost 250X. However, the ability to engineer electrodes with such
a larger effective area remains an important research problem.

In addition to addressing the screening issue, droplet desalting can also be used to modulate
the DNA denaturation (unzipping) temperature [47]. This could open up opportunities to conduct
PCR at room temperature, with modulation of salt concentration as a proxy for temperature control.
The technical feasibility of such an approach to either reduce screening in sensors and/or modulate
the DNA denaturation temperature define interesting future research direction for the field.

4. Selectivity in Droplet-Based Systems: DNA Hybridization as a Case-Study

The third important consideration for droplet-based biosensors is their ability to positively identify
an analyte, in the presence of parasitic molecules. Detection of specific DNA molecules through
hybridization of target DNA to probe molecules is an important component of many bioassays, such
as detection of cancer, bacterial infection, viral infections, etc. Therefore, in this section we focus on
droplet-based assays that targeted DNA hybridization.

A number of techniques have been proposed, such as, optical tagging, surface plasmon
resonance (SPR), mechanical resonance sensors, field-effect transistors, and electrochemical impedance
spectroscopy [69–81]. Section 1.3 summarized several traditional approaches to selectively detect
a particular analyte. Briefly, to address selectivity, most biosensors contain a bio-recognition layer
(e.g., aptamers, antibodies, T-phages, etc. [82–85]) which is immobilized on the sensor surface or the
surface of nano/micro-particles, as shown in Figure 1(c4) (left). In part (a), section, we discuss the
use of traditional immobilization-based scheme for detection of DNA hybridization (using fluorescence
spectroscopy as the transduction method) in a droplet-based system. In part (b), we discuss the use
of immobilization-free scheme for detection of DNA hybridization (based on non-Faradaic impedance
sensing as the transduction mechanism) in droplet-based system.

(a) Localized heating for performing biochemical reactions necessary for selective detection:

In this section, we discuss a scheme to detect single-base pair mismatch in DNA by changing
its binding state through an on-chip heating mechanism. This scheme, as discussed earlier, relies on
traditional immobilization-based method.

In order to perform on-chip heating, several approaches have been used, such as Peltier heaters,
resistive heaters, microwave heaters, etc. [86–90]. These method are either not amenable to small
droplet sizes, or do not allow heating of individual droplets. In addition, they usually require oil
encapsulation to suppress evaporation, which limits on-chip integration.

In an effort to address these issues, Salm et al. presented an on-chip miniaturized FET-based
dielectric heating scheme to control the temperature within the droplet locally [67]. This method
allowed parallel heating of sub-nanoliter droplets and did not require any encapsulation layer for
minimizing evaporation. The authors used on-chip heating in conjunction with Fluorescence resonant
energy transfer (FRET) scheme to detect single-base mismatch between DNA in picoliter-sized droplets.

The technique relies on modifying the DNA strand and its complementary strand with fluorescein
(FAM) and a black hole quencher (BHQ), respectively. In the double stranded conformation, there is
transfer of energy between FAM and BHQ and hence the observed fluorescence is smaller as compared
to single stranded conformation. The binding state of a probe-target pair is changed by heating the
sample solution to different temperatures using the on-chip heater, and fluorescence is measured as a
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function of the control variable which determines the temperature. This temperature (or the control
variable) is used as a proxy for determining whether the probe–target pair are complementary or not.

Figure 4a shows the schematic of the dielectric heating device used for heating the droplet.
For fabricating the device, authors used a top-down procedure starting with a silicon-on-insulator
(SOI) wafer. To reduce the active layer thickness, part of the layer was oxidized and etched using
buffered oxide etchant. This was followed by lithography and reactive ion etching to define the active
areas. After source/drain doping, silicon oxide was grown to form the gate oxide and metal contacts
were defined by lift-off. Finally, a nitride-rich plasma enhanced chemical vapor deposition layer was
deposited and pattered to expose device channel and probing pads. Detailed fabrication steps can be
found in Reference [67].
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Figure 4. (a) Schematic of a droplet sitting on top of a FET device; (b) An array of droplets sitting on
linked devices for parallel detection; (c) Simulated temperature profile within the droplet for an applied
bias 36 V. Temperature within the droplet is highly localized, and returns close to room temperature
at the edges minimizing the evaporation; (d) Theoretical estimate of the droplet temperature as a
function of applied ac bias. Temperature varies roughly as a square of the applied AC bias. (Figure 4b–c
are adapted and Figure 4d replotted from Reference [67] with permission from National Academy
of Sciences).

An AC voltage is applied between the transistor’s leads and the bulk substrate. Figure 4b
shows an array of droplets sitting on linked devices for parallel detection. The authors provide
a self-consistent numerical model with electrical and thermal equations to determine the spatial
and temporal temperature profile within the droplet. Figure 4c shows the numerical simulation
of the thermal profile within a 30 µ m radius droplet. Due to the localized nature of fringing
fields around the device, the heating of the droplet is highly localized and occurs at the core of
the droplet. The temperature at the perimeter of the droplet returns close to the room temperature,
which, fortunately, minimize evaporation. The authors show that the temperature within the droplet
varies as the square of the applied bias (see Figure 4d), and the temperature is stabilized within
milliseconds of the onset of the AC voltage.

Using the approach, the authors first perform a parallel nucleic acid denaturation study, and
then use fluorescence based detection method to determine the single-base mismatch. Figure 5 shows
the melting curve analysis performed on a set of three different DNA strands. DNA strands with
a single-base mismatch have lower overall free energy leading to a reduced melting temperature
(equivalently, less applied bias) as compared to the one without mismatch.

While the immobilization-based technique described in this sub-section offers good selectivity,
surface functionalization requires several hours of incubation and use of specific chemicals, and is
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also known to reduce the hybridization efficiency by a factor of 20–40 [80]. Further, since the sensor
depends on end-point detection, it suffers from the diffusion limited sensor response. In order to
overcome these limitations, an immobilization-free scheme relying on droplet-evaporation may be
used, which is discussed next.
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Figure 5. Derivative of fluorescence w.r.t. voltage vs. AC voltage for 3 DNA strands, the red and
black curves correspond to DNA samples with fully-complementary strands and the blue curve a
hetroduplex with a single-base pair mismatch. The hetroduplex showed the peak at lower voltage,
thereby indicating a single-base pair mismatch (because of lower melting temperature). Figure replotted
from Reference [67] with permission from National Academy of Sciences.

(b) DNFIS as a DNA hybridization assay

As a label-free, electrical scheme, Reference [65] reports application of DNFIS (discussed in
Section 2) as a selective, immobilization-free DNA hybridization sensor. The authors showed that
22-mer unamplified specific DNA strands can be distinguished at concentration of 2 nM, in a little more
than an hour.

The basic idea is as follows: the conductance of DNA-containing solutions changes when two
ssDNA molecules conjugate to form a dsDNA strand [91,92]. As reported by many groups [64,91–94],
the higher the density of ssDNA, the higher the conductance of the solution. This is presumably
because the condensed ions are released to the loosely surrounding ion cloud in transition from
dsDNA to ssDNA. A partially matched dsDNA, therefore, is characterized by a conductance in
between ssDNA and fully-matched dsDNA.

To determine the binding state of solutions with different levels of base-pair mismatch, the
solutions go through a series of carefully chosen incubation/heating steps to repeatedly break and
reform the conjugates, and capture the modulation in the binding state through modulation of the
droplets1 impedance. Depending on the degree of base-pair mismatch and the kinetics of the transition
from ssDNA to dsDNA (and vice versa), the solutions undergo different transition paths, as shown
in Figure 6a. The temperature cycling modulates the ratio of the ssDNA molecules to the total DNA
density (α) and thereby the total measured impedance. Since modulation of α depends on the degree
of mismatch between the strands, modulation of the measured impedance identifies the target DNA
and its concentration.

The impedance values at each step create a dataset with at least 5 variables (from each cycle)
for each solution. The authors analyzed the high-dimensional data by principal component analysis
(PCA) and demonstrated that adding only one heating step (additional 5 min) is sufficient for selective
detection of the target DNA strand (Figure 6b). In addition, they showed that by using PCA, the linear
operation range of the sensor improves by two orders of magnitude [65].
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Figure 6. (a) State-machine shows how various solution evolve as their binding state changes through
time. Solid, dashed, and dotted-dashed lines represent Sπ (full match), SY (partly-match), and S||
(full-mismatch) solutions, respectively; (b) Plot of the first principal component obtained from (i) a
data set comprised of the results of the initial state and 1st incubation (total evaluation time of 80 min),
and (ii) by considering the results obtained from the 1st heating step to the data set (total time ~85 min).
Selective detection down to 2 nM is realized after ~85 min.

To summarize, in this section we have discussed two techniques for selective detection of DNA
molecules in droplets. Both techniques rely on determining the conformational state of probe-target
pair to selectively detect DNA molecules. The on-chip heating methodology uses an on-chip heater to
change the conformational state and then selectively determines the DNA using FRET based detection.
In contrast, the droplet-based impedance sensing method uses repeated off-chip heating cycles to
change the conformational state and selectively detect the molecules using an on-chip impedance
based detection. One future research direction could be to integrate these two schemes onto a fully
functional LoC platform.

5. Challenges and Outlook

Despite significant advances discussed above, it is fair to say that selectivity remains a key concern
for biosensors in general, and droplet-based biosensors in particular. Two approaches could improve
the state of the art considerably.

(a). Pre-filtration by functionalization:

With recent advances in open digital microfluidics, various components of a high throughput
biosensing assay (e.g., sample preparation, manipulation, transport, heating, amplification, and
detection) can be performed in parallel on a single chip. In addition, in order to get the full
advantages of DNFIS (e.g., time-multiplexed data acquisition, elimination of reference electrode,
ultrahigh sensitivity, etc.) one could functionalize microbeads or nanoparticles with the biorecognition
material, followed by their release in a separate spot on the open platform (similar to biobarcode
assay [35]). The target analytes can then be transported to the detection spot, which can be DNFIS.



Biosensors 2016, 6, 14 11 of 16

(b). Development of miniaturized, on-chip reference electrodes:

Among various label-free approaches, Faradaic impedance and field-effect transistor (FET)
based sensors offer excellent selectivity. However, as mentioned earlier, a reference electrode is
necessary to stabilize the fluid potential in both of these methods. Conventional reference electrodes
are bulky, fragile and too big to be inserted into a droplet. Therefore, in order to extend the
capability of droplet-based impedance sensing and to enable charge-based detection in desalting
systems, a miniaturized reference electrode must be integrated. While an ideal miniaturized reference
electrode has not been developed, several research groups [95–97] have demonstrated miniaturized
quasi-reference electrodes which could potentially be integrated into LoC platforms.

6. Conclusions

To summarize, one of the major roadblocks to commercialization of droplet-based screening
systems is the ability to combine different steps, such as, sample collection, sample treatment,
analyte-specific reaction, signal generation and detection on a single platform. Component design and
fabrication procedures must evolve to ensure that different modules are compatible with each other,
and are able to function together. The paper discussed the emergence of droplet-based biosensors
as a promising technology to overcome some of the fundamental limitations of the bulk-based
sensing systems, such as diffusion limit, response time, and screening. The rapid advances in digital
microfluidics for massively parallel handling, manipulation, analyte amplification, and analysis of
millions of droplets further pave the way for realization of high throughput, label-free electrical
screening of biological entities for applications such as fast drug screening, personal proteomics,
etc. Being compatible with architecture of the “open” DMF systems, once the challenges associated
with selectivity of electrical droplet-based biosensors are addressed properly, their integration will
dramatically broaden the application space of the LoC technologies for highly sensitive, on-demand,
low-cost screening.
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