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Hydrodynamic loading greatly affects resonant characteristic of microfabricated structures immersed

in a viscous fluid. In this letter, we demonstrate a technique to measure hydrodynamic loading on a

MEMS resonator in a broad range of actuation frequency. The extracted hydrodynamic loading is in

a good agreement with an analytical solution of an oscillating sphere, and a highly accurate model is

developed for the hydrodynamic loading of the resonator. The developed technique can directly

characterize the hydrodynamic loading of a microstructure with an arbitrary geometry and will

facilitate the optimization of MEMS devices and AFM probes operating in a viscous fluid. VC 2016
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4944412]

Resonant characteristics of a microfabricated mechani-

cal structure in a viscous fluid is one of the most important

factors that determine the performances of various devices,

including atomic force microscopy,1–3 MEMS resonators,4,5

and MEMS sensors.6,7 When a microstructure is actuated in

a viscous fluid, the surrounding fluid is moved by the micro-

structure, generating force that resists the movement. This

resistive force is known as hydrodynamic loading and can be

further divided into two factors, i.e., induced mass and vis-

cous damping. The induced mass is the portion of the hydro-

dynamic loading which is linearly proportional to the

acceleration of the microstructure. This is often referred to

as “added mass,”8,9 and it decreases the resonant frequency

of the microstructure. Similarly, the viscous damping is the

portion of the hydrodynamic loading, which is proportional

to the microstructure’s velocity.

Since the quality factor and the resonant frequency are

major design parameters of microactuators, mechanical sen-

sors, and resonators, there have been various research efforts

to understand the hydrodynamic loading in a precise and

quantitative manner. In an earlier literature,10 the Navier-

Stokes equation was solved for ideal geometries such as a

sphere or a plane in order to understand the characteristics of

the hydrodynamic loading. With increasing use of a microcan-

tilever7,11,12 as a mechanical structure for various MEMS

devices, the hydrodynamic loading on the microcantilever has

been actively investigated. Earlier, the cantilever was approxi-

mated by a sphere13,14 to model the frequency response.

Then, Sader et al. developed an analytic formula to estimate

the quality factor and the hydrodynamic loading of a micro-

cantilever with an arbitrary cross section.1,15 Since then, vari-

ous experimental studies were performed to characterize

hydrodynamic loading and resulting changes in quality factor

and resonant frequency.15–18 Resonance of a microstructure

immersed in a viscous fluid is often modeled as that of a

second-order harmonic oscillator, and the hydrodynamic load-

ing can be characterized using the resonant frequency and the

quality factor extracted from the frequency response near the

resonant condition. This approach can readily produce the

induced mass and the viscous damping caused by the sur-

rounding media. However, it is only applicable near the reso-

nant frequencies and cannot characterize the hydrodynamic

loading on a broad spectrum of the actuation frequency.

In this work, a technique that can directly characterize

the hydrodynamic loading of a MEMS resonator in a broad

range of actuation frequency is demonstrated. We also exper-

imentally confirmed that the hydrodynamic loading has the

same dependency to the actuation frequency as an analytical

model of an oscillating sphere,10 and developed a highly pre-

cise model of the hydrodynamic loading on our resonator.

The measurement setup is similar to our earlier studies

and a MEMS mass sensor is used as a mechanical resona-

tor.19–21 The schematic diagram of the measurement setup is

shown in Fig. 1. The resonator is immersed in a viscous liquid

and it is actuated with Lorentz force by applying constant

magnetic field in lateral direction and flowing actuation cur-

rent perpendicular to the magnetic field. The velocity of the

resonator is detected and characterized by a Laser Doppler

Vibrometer (MSV-300, Polytec) and a lock-in-amplifier

FIG. 1. (a) Experimental setup is shown. The structure immersed in a vis-

cous fluid is actuated by Lorentz’s force and its velocity is detected by LDV.

The velocity signal from LDV is analyzed with a lock-in-amplifier. (b)

Optical image of the resonator is presented.

a)Author to whom correspondence should be addressed. Electronic mail:

kidongp@lsu.edu.
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(Model 7280, Signal recovery). A typical resonant frequency

of the resonator in deionized (DI) water is around 55 kHz and

the amplitude is about 0.1 nm. The lock-in-amplifier provides

the actuation current and also measures the amplitude and the

phase of the measured velocity. The combination of the elec-

tromagnetic actuation, the Laser Doppler Vibrometer, and the

lock-in-amplifier enables a highly linear and precise measure-

ment of the frequency response.

The frequency responses of the same resonator in DI-

water and glucose solutions are plotted in Figs. 2(a) and 2(b).

In Fig. 2(a), the gain is defined as the ratio of the measured

velocity to the applied Lorentz force. The phase presented in

Fig. 2(b) is referenced to the actuation signal provided by the

lock-in-amplifier, which is in sync with the Lorentz force.

Since we are measuring the velocity rather than the displace-

ment, the gain increases linearly as the actuation frequency

increases and then decreases when the actuation frequency

becomes larger than the resonant frequency. Also, the phase

starts from þ90�, becomes 0 at the resonant frequency, and

then approaches �90�. DI water and glucose solutions with

three different glucose concentrations (w/w), 9%, 18%, and

27%, are used in the measurement. The density of DI water

and 9%, 18%, and 27% glucose solutions are 0.998 g/cm3,

1.0340 g/cm3, 1.0722 g/cm3, and 1.113 g/cm3, respectively.22

The viscosity of DI water and 9%, 18%, and 27% glucose sol-

utions are 0.890 cP, 1.294 cP, 1.790 cP, and 2.714 cP.22 As

expected, increasing concentration of glucose solution

decreases the resonant frequency and the maximum gain. At

the same time, the slope of the phase transition near the reso-

nant frequency decreases as the concentration increases, indi-

cating decreases in the quality factor. The resonant frequency

and the quality factor are extracted from these measurements,

as shown in Table I. The resonant frequency, f0 is defined as

the frequency where the velocity is in sync with the actuation

force. The quality factor Q is defined as Q¼ 0.5�x0/(d//
dx), where x0, /, and x are the resonant angular veloc-

ity(x0¼ 2p f0), the phase, and the actuation angular velocity,

respectively. The slope of the phase d//dx is evaluated at the

resonant frequency.

In the following analysis, we assume that the resonator

is made of hard materials, such as silicon, dielectric, and

metal, which are commonly used in MEMS devices. Also,

the resonator is assumed to be immersed in a viscous liquid.

With these assumptions, structural damping or internal fric-

tional loss of the resonator is much smaller than the viscous

damping1,23 caused by the hydrodynamic interaction and it is

not considered in the analysis.

If we assume that the spring constant of the resonator in

liquid is same as one in air, we can use the spring constant,

k, measured in air, to calculate the induced mass, m, and the

viscous damping, d in liquid near the resonant frequency, as

follows:

m ¼ 1

4p2

k

f0
2
� mresonator; d ¼

ffiffiffiffiffiffi
mk
p

Q
; (1)

where mresonator is the mass of the resonator itself, which is

16.8 ng.19 This approach is based on a second-order har-

monic oscillator and can be used to approximate the behavior

of the microstructure near the resonance condition. The

spring constant, k, is calculated as k¼ 4p2 mresonator (f0
air)2,

where f0
air is the resonant frequency of the resonator in air.

The calculated value of k of five resonator used in this

experiment is 12.883 6 0.192 N/m. The induced mass and

the damping calculated with Eq. (1) are listed in Table I.

It should be noted that the induced mass and the viscous

damping extracted with the experimental approach in previ-

ous paragraph are valid only in the vicinity of the resonant

frequency. Presently, to characterize the hydrodynamic load-

ing with respect to the frequency, one should use analytical

models and CFD (computational fluid dynamics) simula-

tions, as demonstrated in earlier works.1,2,24 Although such

analytical and computational approaches can characterize

the hydrodynamic loading without fabricating actual devices,

there are still strong needs to directly measure the hydrody-

namic loading of actual devices to accommodate the inherent

variation in the fabrication process of the target devices and

to experimentally validate analytical and computational

models.

To directly measure the hydrodynamic loading on a

broad range of the actuation frequency, the gain and the

phase of the velocity at each actuation frequency can be used

to extract the two unknowns, i.e., the induced mass and the

viscous damping. The resonator is modeled as a second-

order harmonic oscillator

Fext¼ kX jxð Þþ jxdX jxð Þþ jxð Þ2 mþmresonatorð ÞX jxð Þ

jxX jxð Þ¼ jxFext

k� mþmresonatorð Þx2
� �

þ jxd
; (2)

where Fext, jxX(jx), and X(jx) are Lorentz force, velocity,

and displacement of the resonator. The induced mass and the

damping are assumed to be positive real numbers and

FIG. 2. Typical frequency responses of the velocity are presented. (a) Gain

and (b) phase of the frequency responses in 4 different sample fluids, DI

water (0%), 9%, 18%, and 27% glucose solutions, are shown.
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functions of density, viscosity, and actuation frequency. Fext

is assumed as a complex number and is in sync with the

actuation current. Since the phase of the actuation current

from the lock-in-amplifier is used as a reference phase, Fext,

is a positive real number too. Since the real part and the

imaginary part of jxX(jx) can be directly measured by the

lock-in-amplifier, we can build following two equations to

express m and d in terms of x, k, real and imaginary parts of

jxX(jw)25

m ¼ 1

x2
k � 2

�C
2 �D

�C
2 þ �D

2

 !
� mresonator; d ¼ 1

x
2 �C �D

2

�C
2 þ �D

2

�C ¼ x
2Re jxX jxð Þ½ � ;

�D ¼ x
2Im jxX jxð Þ½ � : (3)

Fig. 3 shows the induced mass and the viscous damping of

the MEMS resonator. The resonator is immersed in DI water

and 9%, 18%, and 27% glucose solutions. The average val-

ues of the induced mass and the viscous damping from 5

measurements with the frequency range of 40–120 kHz are

shown as solid lines with error bars. With increasing concen-

tration of the solution, we can see that the induced mass and

the viscous damping increase accordingly. As shown in Fig.

3(a), the induced mass decreases as the actuation frequency

increases. This can be explained by the decrease in the

penetration depth with increasing actuation frequency. The

penetration depth10 d is d¼ (2g/xq)1/2, where g is a dynamic

viscosity of the fluid. With increasing actuation frequency,

the movement of the surrounding fluid attenuates quickly

and the induced mass decreases. At the same time, the vis-

cous damping increases with increasing frequency.

The measured result is compared to the analytical model

of an oscillating sphere in an earlier literature.10 In this

model, a sphere immersed in a viscous fluid is oscillating

vertically with a translational velocity, u. The hydrodynamic

force acting on this sphere can be driven as follows:10

F ¼ 6pgR 1þ R

d

� �
uþ 3pR2

ffiffiffiffiffiffiffiffi
2gq
x

r
1þ 2R

9d

� �
du

dt

¼ 3
ffiffiffi
2
p

pR2g0:5q0:5 1ffiffiffiffi
x
p þ pR3 2

3
q

� �
du

dt

þ 6pRgþ 6p
R2ffiffiffi

2
p g0:5q0:5

ffiffiffiffi
x
p

 !
u; (4)

where R and d are the radius of the sphere and the penetra-

tion depth, respectively. We can separate the above force

into two components, one correlated with the acceleration

(du/dt) and the other correlated with the velocity (u). The

former can be treated as the induced mass as it produces the

TABLE I. The induced mass and the viscous damping extracted from the resonant frequency and the quality factor based on a conventional approach as shown

in Eq. (1) (n¼ 5).

Resonant frequency (kHz) Quality factor Induced mass (ng) Viscous damping (10–6 Ns/m)

DI water 58.304 6 0.566 4.778 6 0.018 79.219 6 0.514 7.359 6 0.028

9% Glucose solution 57.022 6 0.570 4.291 6 0.22 83.586 6 0.590 8.380 6 0.025

18% Glucose solution 55.648 6 0.554 3.810 6 0.025 88.604 6 0.609 9.670 6 0.055

27% Glucose solution 54.366 6 0.547 3.415 6 0.021 93.631 6 0.658 11.044 6 0.053

FIG. 3. The change of (a) the induced

mass and (b) the damping on the reso-

nator. The average values of the

induced mass and the damping from 5

individual measurements are shown as

a thick solid line. Standard deviations

are shown with the error bars. The

dashed lines are from the analytical

model of the oscillating sphere with a

radius of 30 lm. Black lines are from

the fitted model.
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force that is linearly proportional to the acceleration. The lat-

ter can be treated as the viscous damping as it is proportional

to the velocity. The induced mass linearly increases as x�0.5

increases. Also, the viscous damping increases linearly, as

x0.5 increases. Both of the induced mass and the viscous

damping on the oscillating sphere in Eq. (4) are plotted in

Fig. 3 as dashed lines. We set the radius of the sphere model,

R to be 30 lm, as the center platform of the resonator is a

60� 60 lm2. As shown in Fig. 3, both of the induced mass

and the viscous damping of the MEMS resonator are similar

to those of the oscillating sphere.

To further validate the similarity, the induced mass and

the damping of the MEMS resonator are plotted against

x�0.5 and x0.5. As can be clearly seen in Figs. 4(a) and 4(b),

the induced mass and the damping are linear functions of

x�0.5 and x0.5, respectively, preserving the characteristic of

the oscillating sphere model in Eq. (4).

Although the extracted hydrodynamic loading of the

MEMS resonator shows strong similarity to that of the oscil-

lating sphere, it deviates from the analytic solution of the

oscillating sphere. For instance, the induced mass of the res-

onator increased at a slower rate with increasing density and

viscosity, comparing to the analytical model of the oscillat-

ing sphere. Also, the damping increased more rapidly than

the analytical model, as the actuation frequency increases.

We assumed that such deviation originates from the geomet-

ric difference between our resonator and the oscillating

sphere.

To develop a precise model of the hydrodynamic load-

ing on our resonator, the induced mass and the viscous

damping of the resonator in DI water and glucose solutions

were fitted into following equations:

m xð Þ ¼ p
1ffiffiffiffi
x
p þ q

d xð Þ ¼ r þ s
ffiffiffiffi
x
p

;

(5)

where p, q, r, and s are fitting parameters. Table II shows

these fitting parameters with each sample liquid. Then, we

heuristically factored out density and viscosity from these fit-

ting parameters, so that we can divide the fitting parameters

into two factors, one that is dependent on the structure’s ge-

ometry and the other that is dependent on the physical prop-

erties of the fluids, as shown in Eq. (6)

m xð Þ ¼ �p � g0:2q0:5 1ffiffiffiffi
x
p þ �q � q

dðxÞ ¼ �r � g�0:6 þ �s � g0:125q0:5
ffiffiffiffi
x
p

;

(6)

where �p, �q, �r , and �s are fitting parameters after factoring out

the density and the viscosity. The means and standard devia-

tions of �p, �q, �r , and �s are 3.568� 10�96 0.318� 10�9,

3.907� 10�146 0.185� 10�14,�6.663� 10�86 0.570� 10�8,

and 1.369� 10�9 6 0.028� 10�9, respectively. The fitting

parameters are presented in Table II. The fitted curves con-

structed by using the means of �p, �q, �r , and �s extracted from

four sample liquids are shown in Figs. 3(a) and 3(b) with

black lines and show a strong agreement to the measured

hydrodynamic loading. The maximum % error and the RMS

% error of the induced mass are at most 1.82% and at most

0.80%, respectively.25 The maximum % error and the RMS

% error of the viscous damping are at most 5.54% and at

most 1.99%, respectively. To further demonstrate the accu-

racy of the model in Eq. (6), we used �p, �q, �r , and �s extracted

from the experimental measurement of 9% glucose solution

FIG. 4. The average values of (a) the

induced mass and (b) the damping

from 5 measurements are plotted with

solid lines against x–0.5 and x0.5,

respectively. The dashed lines are from

the analytical model of the oscillating

sphere with a radius of 30 lm.
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and analyzed the error between the experimental data and

the model. The maximum % error and the RMS % error of

the induced mass are at most 3.28% and at most 1.75%,

respectively. The maximum % error and the RMS % error of

the viscous damping are at most 10.00% and at most 3.90%,

respectively.25 In spite of the large noise in the measurement

data in Fig. 3, the model in Eq. (6) accurately predicts the ex-

perimental data.

In conclusion, the frequency response of a MEMS reso-

nator in a viscous fluid is measured, and the hydrodynamic

loading at a wide range of actuation frequency is directly

characterized from the gain and phase of the velocity at each

actuation frequency. The extracted hydrodynamic loading

shows a good agreement with the analytical model of an

oscillating sphere, and we clearly show that the induced

mass and the viscous damping are linear functions of x�0.5

and x0.5, respectively. Furthermore, we developed a model

for the hydrodynamic loading with a high precision and sep-

arated the fitting parameters of the model into a term depend-

ent on the structure’s geometry and a term dependent on the

fluid’s physical properties. We believe that the demonstrated

technique would provide direct and precise characterization

of the hydrodynamic loading on a microstructure with an ar-

bitrary geometry and facilitate the optimization of various

MEMS devices and AFM operating in a viscous fluid.

K. Park gratefully acknowledges support from the Louisiana

Board of Regents (LEQSF(2014-17)-A-05) for this work.
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