
Electrical cell counting process characterization in a microfluidic
impedance cytometer

Umer Hassan & Rashid Bashir

# Springer Science+Business Media New York 2014

Abstract Particle counting in microfluidic devices with coul-
ter principle finds many applications in health and medicine.
Cell enumeration using microfluidic particle counters is fast
and requires small volumes of sample, and is being used for
disease diagnostics in humans and animals. A complete char-
acterization of the cell counting process is critical for accurate
cell counting especially in complex systems with samples of
heterogeneous population interacting with different reagents
in a microfluidic device. In this paper, we have characterized
the electrical cell counting process using a microfluidic im-
pedance cytometer. Erythrocytes were lysed on-chip from
whole blood and the lysing was quenched to preserve leuko-
cytes which subsequently pass through a 15 μm×15 μm
measurement channel used to electrically count the cells. We
show that cell counting over time is a non-homogeneous
Poisson process and that the electrical cell counts over time
show the log-normal distribution, whose skewness can be
attributed to diffusion of cells in the buffer that is used to
meter the blood. We further found that the heterogeneous cell

population (i.e. different cell types) shows different diffusion
characteristics based on the cell size. Lymphocytes spatially
diffusemore as compared to granulocytes andmonocytes. The
time difference between the cell occurrences follows an expo-
nential distribution and when plotted over time verifies the cell
diffusion characteristics. We also characterized the probability
of occurrence of more than one cell at the counter within
specified time intervals using Poisson counting statistics. For
high cell concentration samples, we also derived the required
sample dilution based on our particle counting characteriza-
tion. Buffer characterization by considering the size based
particle diffusion and estimating the required dilution are
critical parameters for accurate counting results.

Keywords Microfluidic impedance cytometer . Poisson
statistics . Blood cell counting . Buffer characterization

1 Introduction

Particle counting using coulter principle has been around since
1953 (Coulter 1953) and finds many biological and industrial
applications. For biological applications, coulter counting has
been used to detect particles such as pollen (Zhang 2005),
bacteria (DeBlois 1977), DNA (Kasianiwicz 1996) using
nano-pores and antigen- antibody (Saleh 2003) can also be
detected using on-chip nano-pores. The recent advances in the
MEMS technology and rapid prototyping, results in making
the microfluidic particle counters based on coulter detection
principle (Sun 2010). Such sensors are being used for a range
of applications including purification of liquids by determin-
ing the size distribution of the particles inside the sample,
enumerating yeast cells in the brewing industry (Teass 1998)
and for counting somatic cells in milk (Phipps and Newbould
1996). Other examples include, particle size determination in
composition analysis of debris while using atomic emission
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spectroscopy (Kauffman 1989) and event detection systems
with Geiger tubes (Arqueros 2004; Leo 1994).

Cell counting in microfluidic chips can be done by pass-
ing a cell through a coulter aperture with co-planar or top-
bottom electrodes bonded to it (Holmes 2009). Many studies
have been done to count different cell types including leu-
kocytes, monocytes, platelets, erythrocytes (Berkel et al.
2011; Cheung 2010; Holmes 2010). Cell counting in a
coulter counter follows the Poisson statistics. However, its
detailed characterization is critical in accurate cell counting
in microfluidic devices. In high cell concentration samples
e.g. in erythrocyte counting from diluted whole blood
(Berkel 2011), a portion of the sample is considered for cell
counting because of high volume of total sample after dilu-
tion. In such applications, the cell counts assume to follow
uniform distribution throughout the experiment. However, as
we will show in this article, the distribution depends on the
effectiveness of the buffer pushing the sample, or else the
cells gets diffused into the buffer and cell counts doesn’t
follow the uniform distribution over time. This makes the
sample portion selection very critical. Another important
parameter to characterize is to find the amount of the dilution
required for accurate cell counting as this limits the time,
throughput, power and the amount of the reagents used in
the device.

Recently, we have developed a microfluidic impedance
cytometer for HIV/AIDS diagnostics (Hassan 2014; Watkins
2013, 2011). It takes a small volume of whole blood (10 μL)
and count the CD4+ and CD8+ T cells with high accuracy at
point-of-care. Using that biochip, here we have given a com-
plete characterization of the cell counting process. Our elec-
trical cell counter is based on co-planar electrodes bonded
with 15 × 15 μm cross-sectional area of the microfluidic
measurement channel. In this biochip, erythrocytes were lysed
from whole blood and remaining leukocytes comprising of
mainly lymphocytes, granulocytes and monocytes were elec-
trically counted. We have characterized the cell counting
process over time as a non-homogenous Poisson process and
shown that this charcaterization is useful for buffer character-
ization, required sample dilution estimation and accurate cell
counting.

2 Experimental setup

2.1 Protocol

The schematic of the microfluidic impedance cytometer is
shown in Fig. 1a. The 10 μL of whole blood is infused at
one of the three inlet ports (represented by red color). The
lysing reagent composed of 0.12 % (v/v) formic acid and
0.05 % (w/v) saponin in DI water is infused at yellow port.
The mixing of the blood with the lysing buffer in the lysing

region resulted in complete lysis of erythrocytes. The
quenching buffer composed of 5.3 mL of 0.6 % (w/v)
sodium carbonate and 3 % (w/v) sodium chloride in DI
water is infused at blue inlet port to stop the lysing process
and maintain the osmolarity and pH of the solution (Hassan
2014; Watkins 2013). The quenched sample flow through
the 15 × 15 μm2 cross-sectional cell counting channel with
microfabricated electrodes aligned with it. Fig. 1a also shows
the typical leukocytes passing through the cell counting
channel represented by blue circles. As each cell pass
through the microfabricated electrodes, it generates a bipolar
voltage pulse, with pulse amplitude proportional to the cell
size and pulse width to the cell’s velocity. Fig. 1b shows the
typical voltage signal acquired during the cell counting
experiment for 2 sec. Many cells pass through the counting
channel as seen by the many bipolar pulses. Fig. 1c shows a
typical bipolar voltage pulse generated at each cell passage.
All the bipolar voltage pulses are recorded above 3 times
standard deviation of noise and a pulse amplitude histogram
is plotted as shown in Fig. 1d. The dotted rectangular region
shows the two leukocyte sub-populations which includes
lymphocytes and granulocytes + monocytes. The left popu-
lation in the dotted rectangle represents the lymphocyte
population as they are smaller in size with almost 7.8 μm
average diameter (Hassan 2014) as compared to
granulocytes + monocytes with almost 12 μm average cell
diameter. The left region to the dotted rectangle is erythro-
cyte debris. The rectangular leukocyte region is selected by
considering the minima in between the debris and lympho-
cyte population.

2.2 Chip fabrication

Twenty five nanometers Ti (adhesion layer) and 75 nm Pt
(conduction layer) is evaporated and patterned on the Pyrex
glass substrate. The undesired metal is lifted off using standard
metal lift-off technique to make the final Platinum electrodes.
SU-8 50 negative photoresist is patterned on a Si wafer to
make negative master, to which polydimethylsiloxane
(PDMS) was poured and then cured to make the microfluidic
channels (Hassan 2014; Watkins 2013). The cured PDMS
chips were permanently bonded with glass electrodes using
oxygen plasma.

2.3 Blood samples acquisition

We collected blood samples for this study from University of
Illinois student volunteers through an Institutional Review
Board (IRB) approval. Blood was drawn by a trailed phlebot-
omist via venipuncture and collected in EDTA-coated BD
Vacutainers (BD Biosciences). Afterwards, the sample is kept
on rotisserie at room temperature. Experiments were per-
formed within a few hours of the blood draw.
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3 Results

3.1 Cell diffusion characterziation

Ten microliters of whole blood is infused with lysing and
quenching buffers with ratios of blood: lysing (1:12) and
blood: quenching (1:6.3) (Watkins 2013). The ratios were
optimized for the maximum recovery of leukocytes after
erythrocyte lysis. The electrical counts were obtained for the
entire experiment duration of 15 min. The entire duration is
divided into 100 time intervals and histogram is plotted for the
cell counts w.r.t experiment time and is shown in Fig. 2a. Cell
count distribution over time shows the log-normal function
with characteristic value of μ=1.644 and σ=0.3728. It is
given by the following Eq. 1.

y ¼ f t j μ;σð Þ ¼ 1

tσ
ffiffiffiffiffiffi
2π

p e
− lnt−μð Þ2

2σ2 ð1Þ

The log-normal cell counting distribution can be ex-
plained by the cell diffusion in the buffer as shown in the
conceptual illustration in Fig. 2b. The cell counts over the
experiment duration were expected to follow a uniform
distribution. However, we see a very rapid increase in the
cell counts during the start of the experiment and a slow
decrease in the cell counts at the end of the experiment. The
‘buffer’ in Fig. 2b represents both lysing and quenching
solutions together. Before the blood starts to flow in the
bio-chip, a buffer is already flowing in the bio-chip. The
buffer solution interacts with the blood allowing the cells to
diffuse and allowing some cells to appear early. The mass
transfer coefficient given by k=D/δ depends on diffusion
coefficient, D and depth of diffusion layer δ (Glaser 1993).
The mass transfer coefficient at the start of the experiment ks
is lower than its value at the end of the experiment ke, as the
depth of the diffusion layer is greater at the start. This in turn
results in higher rate of flow of cells to the buffer, vm at the

Fig. 1 Experimental Setup (Hassan 2014). a The device layout with
lysing and quenching modules is shown. Blood, lysing and quenching
solutions are represented by different colors at their respective infusion
ports. The “Lysing” indicates the region where blood and lysing buffer
mixed to lyse all erythrocytes. The “Quenching” indicates the region
where quenching buffer gets mixed to maintain the osmolarity of the
solution. The zoomed-in version of yellow electrodes shows the cell
counting region of 15×15 um2 cross-section with electrodes aligned with
it. The blue circles show the typical leukocytes passing through the

measurement channel. b The bipolar pulses for each passage of a cell,
with height of the pulse proportional to the cell size and width to the cell’s
velocity. cA typical bipolar voltage pulse. dAll the voltage bipolar pulses
are recorded above 3 times standard deviation of noise and a pulse
amplitude histogram is plotted. The dotted rectangular region shows the
two leukocyte populations including lymphocytes and granulocytes+
monocytes. The left region to the dotted rectangle is erythrocyte debris
and the rectangular leukocyte region is selected by considering the
minima in between the debris and lymphocyte population
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end of the blood infusion. Mathematically this can be written as
(Glaser 1993),

vm ¼ kA Molblood½ �− Molbuffer
� �� � ð2Þ

Where A is the cross-sectional area of the channel,
[Molblood] is the number of cells in blood and [Molbuffer] is
the number of cells in the buffer after diffusion.

3.2 Diffusion characterization with heterogeneous cell
population

The mean value of the log-normal distribution, μ, of cell
counts decreases with the increase in the flow rate with an
R2 value of 0.96 as shown in Fig. 3a. This decrease can be
associated with the decrease in the total experiment time as the
flow rate is increased while using the same volume of blood
sample i.e. 10 μL. Fig. 3b shows the histogram of the lym-
phocytes and granulocytes + monocytes cell counts over the
experiment duration. The diffusion coefficient D ¼ kT

6πηr de-

pends of the size of the particles/cells. Lymphocytes being
smaller in size, have a higher diffusion coefficient of
41.40 fm2/sec as compared to granulocytes + monocytes with
value of 26.91 fm2/sec. The higher diffusion coefficient,D for
lymphocytes results in higher value of mass transfer coeffi-
cient k, which in turn increases the rate of flow of lymphocytes
(v) to the buffer as compared to granulocytes + monocytes.
This results in a more skewed distribution for the lymphocytes
as compared to granulocytes + monocytes as shown in
Fig. 3b. The μ value of the log-normal distribution decreases
linearly with the increase in the flow rate for lymphocytes with
an R2 value of 0.92 and granulocytes + monocytes with an R2

value of 0.98 as shown in Fig. 3c. This decrease can be
associated with the decrease in the total experiment time as
the flow rate is increased while using the same sample vol-
ume. The skewness of the log-normal function written in Eq. 1

is given as eσ
2 þ 2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ2−1ð Þ

p
, and gives a high value for

lymphocytes as they get diffused more as compared to
granulocytes + monocytes. Fig. 3d plots the skewness of the
log-normal distribution for leukocytes, lymphocytes and
granulocytes + monocytes. The skewness decreases linearly
with increasing flow rates for leukocytes, lymphocytes and
granulocytes + monocytes with an R2 values of 0.94, 0.92,
and 0.98 respectively. The high skewness for lymphocytes
verifies that they get more diffused in the buffer as compared
to granulocytes + monocytes as shown in Fig. 3d.

3.3 Cell counting characterization as a poisson process

Cell counting process can be mathematically related to a
Poisson process (Kingman 1993). A Poisson process is a
stochastic process which counts the number of events and the
time of each event with respect to each other in a given time
interval. Figure 4a shows a graphical depiction of a Poisson
process which shows that the number of the cell counts (events)
X, in the interval t1 to t2, follows the Poisson distribution with a
parameter value λ, as given by the following equation.

y ¼ P X ¼ kð Þ ¼ λke−λ

k!
ð3Þ

A Poisson process can be subdivided into sub-Poisson pro-
cesses for different time intervals as shown in Fig. 4b. If the
values of λ are same for sub-processes, the entire process is a
homogenous Poisson process, for different values of λ the
process is called a non-homogeneous Poisson process (Ross
2006). The cell counting process of our experiment is a non-
homogenous Poisson process, as the total number of cell counts
changes over time throughout the experiment as we have shown
in Fig. 2a. The cell counting process for the entire experiment is
divided into sub-processes of 1 min time interval, which can be
represented as Poisson processes as the cell counts follows the

Fig. 2 a Histogram representing the electrical cell counts throughout the
entire experiment time. The histogram shows the log-normal function
(μ=1.644 and σ=0.3728). b Conceptual illustration of the log-normal

cell distribution. The buffer interacts with the blood at start and end of
blood infusion and results in diffusion of cells
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Poisson distribution in those sub processes. Fig. 4c shows the
number of cell counts in time interval of 5 to 6 min which can
be approximated as the uniform occurrence of cell counts for
this entire duration. The 5–6 min duration is divided into 1000
intervals and number of cells were calculated in each interval.
The corresponding Poisson distribution of the cell counts in
interval 5–6 min is shown in the Fig. 4d with a λ value of 4.

3.4 Cell counting experiment, a non-homogeneous poisson
process

The cell counting process for the experiment duration is
represented as a non-homogeneous Poisson process by the
following mathematical relation,

Z
m¼1

te
λmtð Þne−λt

n!
dm ð4Þ

Where te is the total experiment duration in minutes, and
dm is the time interval for the sub- process which follows the

Poisson distribution for the cell counts, in our case 1 min. The
λ value is time dependent as the total number of cell counts
differs at different times during an experiment as shown in
Fig. 2a. The λ value is calculated for duration of
1 min throughout the experiment and is shown in Fig. 5. The
λ value for lymphocytes is slightly greater than granulocytes +
monocytes because of their slightly higher concentration in the
sample after blood lysing. The λ value can be represented as a
log-normal function whose μ value depends on the flow rate
and the sample volume used for the experiment.

3.5 Inter-cell spacing characterization

The inter-event spacing of the Poisson process should follow
the exponential distribution as shown in inset of Fig. 6a. The
time difference in between the cell occurrences should follow
the exponential distribution which can be given by the follow-
ing equation,

y ¼ f tjμð Þ ¼ 1

μ
e
−t
μ ð5Þ

Fig. 3 a The μ value of the log-normal distribution of cell counts
decreases with the increase in the flow rate as the experiment time is
reduced (R2=0.96). Error bars represents one standard deviation of the
log-normal distribution at each flow rate. b Shows the histogram of the
lymphocytes and granulocytes+monocytes cell counts over the experi-
ment duration. The lymphocytes showed greater skewed distribution as
compared to granulocytes+monocytes. c Shows the decrease in the μ

value of the log-normal distribution of lymphocytes (R2=0.92) and
granulocytes+monocytes (R2=0.98) with the increase in the flow rate
as the experiment time is reduced. d The skewness of the log-normal
distribution decreases with increasing flow rates for lymphocytes (R2=
0.94) and granulocytes+monocytes (R2=0.98). The lymphocytes show
higher skewness as compared to granulocytes+monocytes as they get
more diffused in the buffer
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The inter-cell spacing of total leukocytes (N=18599), lym-
phocytes (N=10188) and granulocytes + monocytes (N=
8411) follows exponential distribution with μ values as
47.42, 86.43 and 79.02 ms respectively as shown in Fig. 6a.
The μ value increases as the number of the cells decreases in
the solution. As the experiment progresses in time, the μ value
of exponential distribution for an increment of 1 min would
decrease. Figure 6b shows this decrease in the inter-cell time
spacing for leukocytes, lymphocytes and granulocytes +
monocytes. No cells appear for initial 2 min after the blood
infuses into the chip and lysing and quenching process initi-
ates as represented by (A) in Fig. 6b. Cells gets diffused in
buffer resulting in higher inter-cell time spacing of almost

1 sec as the cells starts to appear at the counting region (B)
comprising only of lymphocytes. Granulocytes + monocytes
appeared 30 sec late (C), as they get diffused less as compared
to lymphocytes. Granulocytes + monocytes stops appearing
3 min before the end of the experiment (D) as compared to
lymphocytes as a result of less diffusion into the buffer.

3.6 Doublet/Triplet characterization (Poisson
bursts/clumping)

It is the characteristic of the Poisson process that the random
events occurs in bursts or clumps i.e. more than one event
occur in a specified interval. The probability of getting
Poisson clumps can be obtained from Eq. 3, where λ is the
average number of events occurring in the specified time
interval and k is the number of “event clumps” occurred in
that time interval. Figure 7a shows the conceptual schematic
for the occurrence of event clumps in specified time intervals,
which follows a Poisson probability function. Entire experi-
ment duration is divided into the time intervals of 120 s.
Figure 7b shows the Poisson distribution of cell counts for
interval of 120 sec during 5–7 min of experiment duration.
The time interval for which average number of events is 1 i.e.
λ=1, is found by dividing the total time of 120 s with the total
number of cells occurring in this duration. Using Eq. 3, the
probability of 0, 2 (doublet) and 3 (triplet) cells appearing for
the entire experiment duration of 15 min is shown in Fig. 7c.
The solid black lines represent the theoretical probability
values of 36.79, 18.39 and 6.13 % respectively.

Fig. 5 The cell counting process for the experiment duration is a non-
homogeneous poisson process. The plot represents the λ value for dura-
tion of 1 min throughout the experiment. The λ value for lymphocytes is
slightly greater than granulocytes+monocytes because of their slightly
higher concentration in the sample after blood lysing

Fig. 4 a Poisson process describes the number of cell counts in a
particular time interval. N (t) is the number of counts in the interval 0 to
t, obeys the Poisson distribution. b A poisson process can be subdivided
into sub-poisson processes for different time intervals e.g. t1 or t2. If the
values of λ are same for sub-processes, the entire process is homogenous

poisson process, for different values of λ the process is called non-
homogeneous poisson process. The cell counting process is a non-ho-
mogenous poisson process. c The number of cell counts in time interval 5
to 6 sec (bins=200). d The Poisson distribution of the cell counts in
interval 5–6 sec with a λ value of 4
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3.7 Dilution factor estimation

High concentration of blood cells in the samples requires
sample dilution for the accurate counting results. Assuming
the initial concentration of the sample is C0 (cells/μL), with
sample flowing at the flow rate of X (μL/min), the time
interval, Δt (in seconds) for which λ value is 1, is given as,

Δt ¼ 60

C0 X
ð6Þ

Based on the Poisson theory of counting cells, the required
dilution factor (DF) can be estimated by the following
Equation,

DF ¼ T

Δt λp
ð7Þ

where T= even time seperation coefficient. Event time is the
average time required for the event to occur, e.g. in our case a
bipolar pulse width of 80 μs, representing a cell. Separation
coefficient is defined as the time spacing (in multiples of event
time) required in between two events. λp, is the lambda value
to get the required Probability P which can be found from the
Supplementary Fig. S1. The dilution factor estimation prob-
lem can be formulated as to find the dilution factor required
using Eqs. 6 and 7 so that no more than 2 cells occur in a time
interval with a probability of e.g. 0.5.

4 Discussion

The Poisson counting process characterization can be used for
any other particle counting application. Here, we have shown
that our cell counting process is a non-homogeneous Poisson

Fig. 6 The time difference in between the cells appearance follows the
exponential distribution. a The inset shows the spacing in between the
cells follow the exponential distribution. The Inter-cell spacing of total
leukocytes, lymphocytes and granulocytes+monocytes follows exponen-
tial distribution withμ as 47.42, 86.43 and 79.02msec respectively. bThe
plot shows the μ value of exponential distribution for each minute for

the entire experiment duration. (A) Blood Infuses into the chip and lysing
and quenching process initiates, no cells appear for initial 2 min, (B) cells
gets diffused resulting in higher inter-cell time spacing of 1 sec, (C)
granulocytes+monocytes diffused less as compared to lymphocytes and
thus appears 30 sec late, (D) granulocytes+monocytes stops appearing
3 min before lymphocytes

Fig. 7 a Occurrence of event clumps follows the Poisson probability
function. b The Poisson distribution of cell counts for interval of
120 sec. c The probability of 0, 2 and 3 cells appearing in intervals

of 120 sec for the entire experiment duration of 15 min. The solid black
lines represent the theoretical probability values of 36.79, 18.39, and
6.13 % respectively
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process, as the λ value changes over time because of the cell
diffusion in buffer. However, other particle counting processes
can be homogenous Poisson processes provided that there is
no diffusion of the particles in the buffer which is pushing the
sample in flow based systems. Thus, it is important to char-
acterize the effectiveness of the “push buffer”, which can be
done by measuring the skewness of the log-normal distribu-
tion of the cell/particle counts over experiment time. In sam-
ples with heterogeneous cell/particle population w.r.t. size, the
diffusion should be characterized for each individual type for
accurate counting results. In high particle concentration sam-
ples, e.g. erythrocyte counting in diluted blood samples, a
portion of the sample is usually selected for cell counting
(Berkel 2011). In such applications, characterizing the effec-
tiveness of the buffer bymeasuring the diffusion of the cells in
the buffer is extremely important while selecting the sample
portion for accurate counting results.

Coincidence occurrence of cells because of Poisson
clumping phenomenon can only be prevented with extremely
high dilution factors which makes the counting process im-
practical. To investigate the multiple occurrences of the cells,
the entire experiment time is divided into the time intervals
ranging from 2,000 μs to 100 μs and the maximum number of
cells were found in those intervals. Fig. S2a shows that the
total number of intervals increases exponentially as the time
interval bin is reduced from 2,000 μs to 100 μs. The percent-
age of the intervals with zero cell occurrence increases linearly
with (R2=0.99) as the time interval bin is reduced from
2,000 μs to 100 μs as shown in Fig. S2b. The maximum
number of cell occurrences reduces as the time interval bin is
reduced as shown in Fig. S3. For the time interval of 100 μs,
two cells occur in the bin, verifying a Poisson clumping
phenomenon.

5 Conclusions

Particle counting process characterization is important for
accurate counting results. In this paper, we characterize the
electrical cell counting process in a microfluidic impedance
cytometer and is shown to be a non-homogenous Poisson
process. We demonstrate that lymphocytes diffused more in
buffer as compared to granulocytes and monocytes. In sam-
ples with heterogeneous cell populations, individual cell dif-
fusion characteristics should be considered especially if a
portion of the sample is being selected for accurate counting
results. Our cell diffusion analysis can be used for

characterizing buffer effectiveness to push the samples which
is critical in accurate cell counting. We also show that the time
difference in between the cell occurrences follows an expo-
nential distribution. The probability of occurrence of more
than one cell in specified time intervals is also characterized.
We used the Poisson statistics to estimate the sample dilution
required for samples with high concentrations of cells as this
limits the time, throughput, and the volume of the reagents
used in the device.
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